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Abstract

This paper develops a new empirical and theoretical approach to studying network
effects in the diffusion, or internal firm adoption, of new technology. The empirical
model devises a two step method which first categorizes geographies based on a spatial
panel or network model. Then, it compares firm behavior across these categories when
there is an exogenous change in information flow that affects all areas. The case study
in the American oil & gas fracking revolution documents novel results that firm adop-
tion of new technology is more sensitive to an increase in usable knowledge in highly
networked areas. I then propose a theoretical framework for understanding diffusion as
a dynamic transition process which can explain these empirical trends. I take a classic
model of firm investments and incorporate a technology adjustment dimension. The
model predicts different rates of aggregate technology diffusion depending on whether
the firm confronts the technology problem holistically or as separate business lines. I
show that true technology transition where old technology is endogenously retired are
not always possible.1 Spillovers in productivity efficiency are more likely to result in
higher diffusion levels as opposed to spillovers in lowering adjustment costs. I show
empirically testable implications using the heterogeneous response across firm size and
specialization.

∗Geneva Finance Research Institute, Swiss Finance Institute, Geneva School of Economics & Manage-
ment - University of Geneva. vera.chau@unige.ch. I am grateful to my dissertation committee: Amir Sufi
(Chair), Lars Peter Hansen, Steven Kaplan, Pascal Noel, and Constantine Yannelis for their guidance. I
would also like to thank Connor Dowd, Samuel Hartzmark, Samuel Hirshman, Augustin Hurtado, Jessica
Jeffers, Ryan Kd†ellogg, Elisabeth Kempf, Kelly Posenau, Ana-Maria Tenekedjieva, Pietro Veronesi, and
Anthony Zhang, as well as participants in the Economic Dynamics working group, Sufi’s PhD working
group, and the Booth finance brownbag for helpful comments. The research is made possible with data
provided by Enverus inc through the generous funding of the Energy Policy Institute at the University of
Chicago.

1Which is of particular concern in industries that are important for the clean energy transition.

vera.chau@unige.ch


Networks & Adoption Chau

The introduction of new technology, or innovation, is a key process in economic growth.

Yet, these new technologies also need to be adopted by agents in the economy, or diffuse,

to be effective. This latter process is not as well studied as the former. For example, it is

not clear why some technologies seem to organically spread throughout an industry while

others never take off.2 As with many economic applications, network effects is a natural

hypothesis to consider. It has already been studied in firm productivity (Giroud et al.

(2021)) and the closely related R&D process (Myers and Lanahan (2022)). However, from

both an empirical and theoretical perspective, studying networks in a dynamic process

like diffusion is difficult. This paper develops a new empirical approach to understanding

the impact of shared learning on the adoption process of newly discovered technologies. I

employ the method to provide novel evidence of networks effects on diffusion in a recent

technology revolution that had a meaningful impact on the global economy, the fracking

revolution in American oil & gas.3 Then, I illustrate the implications of this network

effect in a classic model of firm investments incorporating the technology adoption dimen-

sion. It provides a framework for analyzing how firm behavior interacts with the macro

technology process. It also studies aggregate dynamics such as the rate of transition be-

tween technologies which is of particular policy interest in industries like renewable energy.

Results from a standard network estimation method can be interpreted as evidence

that outcomes in an economy are correlated with each other. In the technology setup,

this could show that it’s beneficial to adopt the same technology simply because there is a

common supplier or the technology is well suited to an area. I augment this procedure to

show that elasticity to information flows such as data leakage is directly related to network

strength. The two-stage “stress test” procedure first establishes a county-level categoriza-

tion using a spatial panel model. At this stage, I introduce an innovative method for

capturing true knowledge effects. Rather than estimate correlations in outcomes, I design

a specification around a simple thought experiment. If there’s no knowledge sharing, pro-

ductive wells should cluster together regardless of the skill of the firms nearby. I exploit

2Stokey (2020) noted in a recent working paper examining the literature on this topic that “... the
importance of most new technologies derives from the fact that they spread across many different users
and uses, as well as different geographic regions. Thus, the diffusion of technological improvements, across
producers within a country and across international borders, is arguably as critical as innovation for long
run growth.”

3The institutional details section below provides an example of diffusion in this setting and an additional
discussion of why this case study is well-suited for analysis.
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this to measure the spatial network effect from “indirect effects” like proximity to skilled

firms. Then, I compare the sensitivity of adoption decisions to plausibly exogenous influxes

of useful information. If there is useful, shareable information produced when firms invest

then changes in investment levels are a useful proxy for information flow. Importantly,

the method does not compare network strengths across groups directly. It doesn’t even

require interpretation of the network estimates which is only used for sorting. Rather, the

coefficient of interest captures the response within a network group to exogenous informa-

tion changes.

I use a standard term in drilling leases to get exogenous variation in investment. Most

leases include an initial three-year term at the end of which lessees must have shown in-

vestment activity in order to retain the rights in the lease.4 The two-stage-least-squares

(“2SLS”) baseline specification shows that firm-level adoption rates in strong network ar-

eas are more sensitive to higher investment activity than weaker network areas. This new

measure, adoption rate, captures how investments in each area contribute to the rate at

which firms are changing the new technology ration of their capital stock. In response

to one additional well drilled by other firms in the area during the preceding quarter,

the adoption rate is 1.3% higher in higher network counties. The same number in the

lowest network area is 0.01%. The results are complemented by a productivity benefit

from investing in strong network areas. Using a typical functional form for oil production,

monthly output from wells in high network areas is 7.6% higher in response to a one unit

investment increase. By contrast, the same number in low network areas is 0.05%. In

back of the envelop calculations, this amounts to 1.4 million more barrels of oil (equiv-

alent) over five years. On the other hand, when the experiment is replicated with the

older, conventional technology, the coefficients on investment are negative in most net-

work categories. Intuitively, the old technology is more established and less amenable to

productivity gains since it’s already at the productivity frontier. With nothing to learn,

there are no productivity or investment responses to shocks in the network.

Networks can appear due to a number of things such as shared supply lines or human

4Prior work has shown that this results in bunching of investment activity around expiration dates.
See Herrnstadt et al. (2020).
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capital exchange. The method can also be used to test these different network sources by

varying the spatial weighting assumptions in the first stage. In the main exercise, the first

stage weighting approximation uses inverse-distances to approximate knowledge sharing

which is motivated by a natural propagation structure. In the oil extraction setting, wells

drilled nearby present more useful information than those drilled far away as they are ex-

ploiting the same underlying geological structure.5 Further, heterogeneity in complexity

across geologies provide cross-sectional differences which makes the estimation effective.

In some areas, all wells drilled within a thirty mile radius are similar in depth and design

while others contain meaningful differences even for wells drilled close to each other.6 I

replicate the experiment with an equidistant network which is the broadest test of other

sources of contagion. Here, the result is completely reversed. The elasticity of adoption

to investment activity is highest in weaker network areas and negative in the stronger

network areas.

Motivated by these results, I propose a new model of technology adoption which can

endogenously lead to diffusion in a dynamic model with heterogeneous firms. The model

uses a generic AK model so it can be applied broadly. Firms face the classic investment

problem while incorporating a technology adjustment dimension. I use MIT shocks to

general productivity between steady states of the economy to study aggregate transition

paths. I show that if firms mimic conglomerations where deploying each type of technol-

ogy is treated like an individual business line, then the economy is much less susceptible

to a true technology transition. Old technology is not disposed of even as new technol-

ogy investment increases. On the other hand, smaller firms with shared resources across

technology types are more sensitive to tipping into full diffusion. I also study the differ-

ence between productivity-based knowledge spillovers and cost-based knowledge spillovers.

Cost savings have to be very high to have an impact on new technology investment levels.

Their impact on the adoption rates of new technology is also inelastic because they don’t

affect old technology as directly. Finally, I take advantage of the heterogeneous model to

derive testable implications for empirical work. In particular, adoption rates are higher for

small firms when firms don’t act like conglomerates. On the other hand, adoption rates

5Note that this does not mean general purpose knowledge does not exist. Rather, the method is
designed to exploit additional benefits from proximity.

6Figure 2 illustrates this with an example.
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are strongly impacted by firm sizes when they look more like conglomerates because the

marginal value of additional capital (by type) effect dominates. I test the model results

using the oil & gas case as a test case.

The paper proceeds as follows. After a literature review, section I reviews the empirical

framework including the empirical strategy, the network model, the institutional details,

and the data. Section II presents the main adoption and productivity results using the

baseline network specification along with robustness tests around alternative explanations.

Section III presents the new model of diffusion and the results. Section IV concludes.

Related Literature

This paper contributes to a body of literature that has sought to endogenize the tech-

nological change necessary for broader economic growth. Romer (1990) observed that

the non-rivalry of ideas can be useful in reconciling observed exponential growth rates in

output despite more linear physical capital investment levels. Since then, the literature

has sought to explain the conditions under which these ideas are created, usually in the

context of profit-maximizing firms. For example, Jones (2021), Jones (2005), Aghion and

Howitt (1997), Aghion and Howitt (1992), Akcigit et al. (2021), Bloom et al. (2020) are

all versions of this question. Many of these focus on the trade-offs between investing in

capital that produces output as compared to ideas which improve production, potentially

with risk. Others such as Akcigit et al. (2021) study the creation of new ideas measured

through patents on the under different tax schemes.7 Imitation has emerged as a mech-

anism of interest in the innovation debate. Important theoretical contributions to the

question of imitation include Perla and Tonetti (2014) and Benhabib et al. (2021). Other

theories of diffusion focused on specific mechanisms such as firm heterogeneity including

Akcigit and Kerr (2018) and Comin (2014), Hall and Khan (2003), and Akcigit et al.

(2020a). Other important empirical work on the idea of R&D spillovers include Bloom

7At the same time, a number of papers have returned to the macroeconomic roots of the endogenous
growth literature to study the implications of endogenous technological change which these papers exam-
ined. These questions broadly studied how the process of endogenous technological growth interacts with
economic growth, business cycles, and labor-capital shares. For example, Acemoglu (2002), Comin and
Gertler (2006), Anzoategui et al. (2019), Akcigit and Ates (2021), Eberly and Wang (2009), Acemoglu and
Guerrieri (2008). Interestingly Acemoglu et al. (2012) takes this approach to analyze the implications for
the environment.
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et al. (2021), Lucking et al. (2019), and Akcigit et al. (2020b).8 Finally, work in inter-

national economics such as Comin (2014) have made significant strides in understanding

this issue of diffusion and spillovers.

Despite this large literature on innovation, diffusion is a different story. Stokey (2020)

summarizes the existing empirical literature on diffusion and notes their empirical limita-

tions. The earliest works on this begins with Griliches (1957) who studied the adoption of

hybrid corn. Recently, Bloom et al. (2013) proposed a method to allow econometricians

to disentangle the effects of technology spillovers and product competition. While this

approach is different from the network sorting method used in this paper, I relied on this

concept in building this method.

The paper draws on ideas in the agglomeration and productivity literature such as,

Giroud et al. (2021), Audretsch (1998), Matray (2021), Kline and Moretti (2014), Davis

et al. (2014) which examine spillovers across a variety of mechanisms. Jaffe et al. (2006)

in particular studies knowledge spillovers in a localization context. The literature on

intangible capital and the data economy is critical to understanding how knowledge en-

ters the firm investment problem. Some recent examples include Farboodi et al. (2019),

Abis and Veldkamp (2020), Farboodi and Veldkamp (2021), and Peters and Taylor (2017).

Finally, this paper relates to the growing literature on energy and the environment.

There have been a number of papers studying technological growth in the context of

climate change. Nordhaus (2014) and Jaffe et al. (2010) are two prominent examples. On

the other hand, this topic has also come up for researchers trying to understand the energy

sector itself. For example, Kellogg (2011) and Covert (2015). In particular, Decaire et al.

(2019) and Decaire and Wittry (2022) study peer effects in real options exercise which

is closely related to this paper. The baseline productivity analysis in this paper lends

support to their contention that the information from peers is valuable which aligns with

their result that firms do indeed wait to gain access to it.

8Thompson (2001) and Mishra et al. (2021) analyze diffusion and adoption in specific industries.
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I. Empirical Framework

When firms make physical capital investments in a network, shared knowledge is created

as an externality. In areas where the network is able to transfuse that information in a

useful manner, firms should react more strongly to any change in investments because

wells can take advantage of this new information. The main empirical framework is de-

signed to mimic this logical framework. Figure 3 illustrates this thought experiment. This

section begins with a description of the institutional details and data. Then, the empiri-

cal strategy section discusses the econometric specification and how it is implemented in

the oil & gas setting. It relies on two important aspects. First, the spatial panel model

used to assign initial network strengths to each county. Then, I discuss the strategy for

constructing “indirect effect” explanatory variables which help disentangle contagion and

knowledge sharing. These variables include the skill level of the influencing firms and a

measure of the amount of auxiliary data available from the influencing wells.

A. Institutional Details & Data Description

The discovery that horizontally drilled wells can be combined with the hydraulic frac-

turing technique known as “fracking” unlocked vast resources in the continental United

States and revolutionized American oil and gas.9 This innovation is a completely new well

design. Often, the geographic area will dictate the type of well you use. While additions

and changes can be made after a well has been completed, it is not possible to change

from horizontal to a vertical well. In fact, drilling permits require you to specify which

type of well you will be drilling. This information is used in this project to identify the

technology type in the data.

Before firms can apply for a permit from municipal and state regulators giving them

permission to drill, firms must retain a lease from either the government or private

landowners10 giving them the option but not the obligation to drill. These leases con-

9One absurd early attempt to recover these fuels by the US Army
in the fifties involved a nuclear bomb https://www.cpr.org/2019/09/06/

remember-the-first-time-colorado-tried-fracking-with-a-nuclear-bomb/.
10While the government fixes the prices and terms for leases on their lands, private leases can vary

significantly.
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tain an initial or primary term which last three years in most of the United States. If no

well is drilled on that land prior to lease expiration, the lessee loses the rights. Herrnstadt

et al. (2020) showed that there is significant drilling activity clustered around expiration

dates. I use the number of leases that are due to expire that quarter as an instrument for

investments by other firms which will be referred to as ex-firm investment activity in the

sequel.11 Once firms have a lease they will apply for a permit which includes information

about the well including the direction (horizontal vs vertical), the geo-coordinates of the

well, and other design features. These data are useful indicators of the well design even

though they are not the full specification. In addition to using this information in this

paper, it motivates the data leakage that leads to knowledge sharing beftween firms. A

classic production function for oil wells is known as the Arp’s model12,:

Ow,t = QwAgeβw,t

log(Ow,t) = αw + βlog(Agew,t)
(1)

For well w, month t output Ow,t is modeled as a function of a well’s age Agew,t. β, which

is referred to as the “decline rate” is usually less than zero and governs the rate at which

well output declines over time. Qw is sometimes called the “baseline productivity rate”.

This variable captures overall well-level quality.

Figure 1 motivates the main idea in the paper. The first panel shows the relative pro-

ductivity of horizontally drilled wells as compared to its traditional vertical counterparts.

The measure is derived from amending log form of production function 1 with a fixed effect

for conventional or horizontal well type. The model is re-estimated each quarter using the

full sample and the plot shows the coefficients βq. In addition to being more productive

at discovery, the new technology has continued to grow relative to the old technology.

Over the same time period as the productivity rise, the intensive margin adoption rate

in the second panel is also increasing. This variable is the average firm-level new tech-

nology investment ratio, Horizontal wells drilledi
Total wells drilledi

, for all firms in the sample. As aggregate

investment levels rise (fall) in the second panel, more (less) information is accumulated

11For a firm in consideration, any investments made within the quarter of its own lease expiration is
not counted in the dependent variable.

12There are more complex versions of this decline model but I choose the simple one because it lends
itself well to linearization and more complex models aren’t needed for this analysis.
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and made available to all firms in the industry. As a result, the productivity of wells rise

(fall) in kind. The picture motivates the use of adoption rate as a key dependent variable

of interest. While prior studies have discussed creative destruction as a method for tech-

nology diffusion, figure 1 shows an example where the diffusion of the new technology is

not propelled by specialized firms driving conventional firms out of the industry. Instead,

firms are gradually changing the technological makeup of their capital stock through their

investment decisions.

A.1. Discussion of the Data

State regulators require operators to report their monthly production which includes to-

tal barrels of oil produced or oil equivalent amount of gas. All of these data are made

publicly available. The data used in this paper is provided by Enverus13 who collects this

filing information. The company’s analytical data is widely used in the industry.14 The

data include the well-month production information linked to their corresponding, static

permit and lease information through their API number. Each well is associated with an

operator who may or may not be the only firm actively operating the well. I use this

variable to identify firms. Investments are measured by the number of wells drilled and

they are recorded for this project in the month that the well is completed.

To be included in the data sample, wells must be drilled after 2005 even though I start

the analysis in 2008. A well has to appear in the dataset for at least 30 months. This

allows me to estimate lifetime production rates with more accuracy and removes wells that

may have prematurely stopped production. Counties that have produced fewer than 100

wells in its history are not included. The summary statistics reported in section ?? shows

the average well count within the geographies that are included. No offshore or Alaskan

wells are included.

13Prevoiusly DrillingInfo
14Even the federal energy information administration (EIA) uses the data from Enervus in its reports

and assessments of the American oil industry.
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B. Empirical Strategy

Unlike existing models, this empirical test considers both the existence of a network effect

and quantifying how that network alters the elasticity of firm decisions to changes like in-

formation flow. Intuitively, the procedure can be thought of as a stress test. The first step

is to estimate the network strength in each oil producing geography using a spatial panel

model. Then, I examine differences between networks in how firms react when there’s an

influx of useful information. Knowledge sharing in this case is motivated by data leakage

when firms drill wells so changes in investment should proxy for information flow. I use

lease expirations as an exogenous shock to investment levels which is uncorrelated with

network strengths. If there is a strong sharing effect then exogenously altering the invest-

ment levels should disproportionately affect the stronger network areas. I also explore two

explanatory variables constructed to disentangle the shared knowledge effect from general

contagion. They are referred to as “indirect variables” because they exemplify an indirect

estimate of networks as opposed to a direct method such as using the performance of

nearby investments.

B.1. Estimating Networks: Spatial Panel Model

The spatial panel (or autoregressive) model is a weighted linear regression model which

allows the explanatory variable realizations of “nearby” observations to influence the de-

pendent variable. The specification for the spatial lag model is,

Yg = γg1WYg +Xg
t γ

g
2 + βgWSg + ν

ν = λWν + ϵ
(2)

The appendix15 contains a discussion of the econometrics in this specification but I

proceed with an intuitive description here. The analysis is conducted at the well-level

and the regression is run separately for each oil producing county in the United States.16

Let N denote the total number of wells that have ever been drilled in county g over the

sample period. Y is a N×1 vector containing a measure of an investment’s lifetime perfor-

mance.17 W is a N ×N weighting matrix which governs how nearby “influence” wells can

15available at nverachau.com/research
16Restrictions to eliminate smaller counties are described in the appendix.
17Generally, Qw, the baseline productivity rate is used.
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be related to the “reference” well contained in row n ∈ N . In the baseline specification,

this matrix W contains the inverse-distance and inverse-time difference between reference

well n and influence well m. This is calculated as, 1
|dn,m| ×

1
|tn,m| as long as well m was

drilled before well n. dn,m is the physical distance between rows n,m. tn,m measures the

time in months between when well n and well m were drilled. All other wells are given

zero weight in matrix W as well as any well , m, that is drilled by the same firm. The

inverse distance and time weights capture a structure where wells that are drilled farther

away are less useful because the underlying geology will be less similar. Additionally, wells

that were drilled a long time ago will not be as helpful as recent ones since information is

likely cumulative.

γg1 absorbs contagion effects to assuage concerns that the network model is only cap-

turing clustering around successful geographies. The two variables used for the indirect

effect variable, S, are firm skill and data availability which are detailed next. They are de-

signed so that coefficient βg is unlikely to capture a direct contagion effect. Also included

in each measure are geography and firm level controls for inherent quality or size effects

in matrix Xt. These controls are contemporaneous and there is no spatial effect but each

observation n has a set of these controls.18 Eligible counties are sorted according to point

estimates of βg. Limiting the sample to counties where βg yield a significant estimate

would tighten the results. However, it is unclear how meaningful the standard errors are

in this case. Because the goal is simply to sort counties based on the perceived evidence

of network strength and then further stress- test that strength, I use the more inclusive

point estimate.

B.2. Indirect Effect Variables: Skills and data availability

To better capture the specific knowledge-based spillover in this paper, I introduce two new

variables which are referred to as “indirect effect variables”. Unlike γ1 in equation 2 which

could result from many spillover sources, these variables address an additional question,

“From whom are you learning and what are you learning?”. Firm skill is not geography

specific. Intuitively, if there is no learning from other firms then drilling near a skilled

firm should be no different than drilling near an unskilled one. Figure 4 captures this idea

18The full list with descriptions are included in the appendix.
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with an illustrated example. Note that this coefficient will capture the additional benefit

of drilling near a skilled firm conditional on there being any effect in the first place. It

does not capture the unconditional effect of the network so it is a more restrictive mea-

sure. The data availability measure is constructed using additional information regarding

a well’s fracking program. These data are only available in some areas due to regulatory

differences in disclosure rules. It’s also not uniformly useful everywhere.19

Skill Vector The skill vector Si,t is estimated using a firm’s entire nation-wide

portfolio of wells. For each firm, a “horizontal” and “conventional” skill is measured

separately. I amend the Arp’s20 production function in 1 to estimate a version of baseline

production rate Qw that is firm-specific as opposed to well-specific. Using the full dataset

with every horizontal well drilled across all geographies I estimate,

log(Ow,t) = αw + βlog(Agew,t) =⇒

log(Ow,t) = βlog(Agew,t) + ηi,q1{Firm i} × 1{q} + ϵw,t

Rather than αw capturing the baseline production rate of well w, this model has η̂i,q

which captures the firm-quarter baseline production rate. This coefficient is then used to

index the firm-quarter skill level.21 Vector St then contains this estimate, η̂i,q if firm i

drilled a well in the quarter that contains month t. Substituting these specific variables

into the specification described in equation 2 for each well in county g,

Yg
t = γg1WYg

t +Xg
t γ

g
2 + βgWSg

t + νt

Yg
t =


α̂w1,t

...

α̂wN ,t

 , Sg
t =


η̂i1,q
...

η̂iN ,q

 (3)

where w ̸= w′.

19Not all states and municipalities require the same amount of disclosure regarding supplemental data.
This introduces variation in the availability of these data. Even when municipalities require certain data,
the implementation of the policy varies.

20There are more complex versions of this decline model but I choose the simple one because it lends
itself well to linearization and more complex models aren’t needed for this analysis.

21A similar exercise is done to obtain the geography-quarter level “skill” or production controls but
with 1{Geo g} × 1{q} instead of the firm-quarter fixed effect
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Data Availability There are a number of details related to the fracking program

which some municipalities require in regular filings. For example, “proppant” measures

the amount of sand (mixed with chemicals and water) used to hold fissures open during

the fracking process. The appendix details each of these variables. For each variable in

this set, z, let vector Az contain a 1 if the information is available for the well in row

w and 0 otherwise.22 The estimate then proceeds as in equation 3 but with the vector

of βg
zWAz

t instead of βgWSg
t for each individual z in the supplementary set. Then, the

mean of the recorded βg
z is used to sort the counties in the data availability network sort.

As with the skill based βg, the sorting is done using the average of the point estimates of

β̂g
z .

B.3. Baseline Specification

β̂g, the coefficient from the spatial panel model is used to sort counties into quartiles. I

focus on the counties where β̂g > 0.23 To avoid confounding the network sort with the main

effect, the spatial panel model is estimated using the data from 2008Q1 to 2014Q3 only.24

I use lease expirations as an instrument for investment activity so the final specification is

a 2SLS conducted separately for each treatment (high network bucket) and control (low

network bucket) group. 25 The specification for each bucket, netn for n ∈ {1, 2, 3, 4}, is

given by,

22Note that I use the empirical observation for data availability instead of a likelihood estimate given
state or municipal policy. There are some areas where the information is technically required but en-
forcement is more lax so the data is not in fact available. It’s possible to use a likelihood estimate and
use the result to measure data availability. However, because the goal is to study the impact of the data
availability on productivity and firm behavior, I chose the more direct path of simply using the data that
would be available to firms.

23Note that the cuts are made at the county level and not weighted by the production activity in each
county.

24Figure 5 depicts the West Texas Intermediate “WTI” spot price for oil over the sample period. The
lines in red shows the results of a Markov switching model estimated using the oil price. The “pre-sorting”
period used to get the network estimates corresponds with the introduction and initial growth of the
horizontal drilling technique. Compared with the second panel of figure ??, aggregate investment levels
tend to move with the oil price. Thus, I avoid using the full sample to estimate the network strength
because periods of investment drop overall will impact firm behavior and the network measures. Further,
by choosing an early period for the spatial estimates, I avoid incorporating effects that I am estimating
into the network sort. For example, firms might invest more over time in high network areas.

25I follow Herrnstadt et al. (2020) who uses lease expirations as an instrument for investment activity.
The standard lease format gives lessees a fixed number of years (“primary term”) to show activity. If
no well is drilled (Note this can be an exploratory well, it does not usually need to be a producing well.
However, empirically, both types of well appear) within that time period, the lease is terminated. If a well
is drilled before the primary term expires, the firm retains the right to the lease indefinitely and can drill
as many additional wells as they want.
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IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

Ai,g,t = α+ βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage)

log(Ow,t) = ω + βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage′)

(4)

IHg,q−1 is the ex-firm investment activity in county g during the preceding quarter q−1.

The H superscript indicates that this specification only includes investments made in

horizontally fracked wells, the new technology in this analysis. To construct this, I first

aggregate all horizontal wells drilled in the county that quarter, then subtract the wells

that were drilled by the firm i. Lg,q−1 denotes the number of leases whose primary term

was set to expire in the preceding quarter. In the second stage, the dependent variable,

Ai,g,t denotes the adoption rate for firm i in geography g during quarter q while Ow,t

denotes output in barrels of oil equivalent (“BOE”) for well w in month t. The adoption

rate is defined as

Ai,g,t =
OH

i,t

Oi,t
−

OH
i,t −OH

i,g,t

Oi,t −Oi,g,t
(5)

Let Oi,t =
∑

iOw,t where Ow,t is the monthly output from well w and is drilled by

firm i. Also, let Oi,g,t =
∑

w∈g Ow,t which denotes the total amount of output drilled by

firm i in geography g. H denotes horizontal output. The first term of the adoption rate

is the technological sophistication of firm i output at month t. The second term denotes

the hypothetical technological sophistication of firm i without the contribution from all

of firm i’s capital in geography g. The variable captures the contribution of geography

g in changing firm i’s technological sophistication. The adoption result does not rely on

productivity gains from using shared information. Firms can believe the information is

useful but fail in executing on it. A supplementary productivity analysis, second stage′

uses log(Ow,t) in the second stage to study this relationship. This version is the log version

of the Arp’s production model with the inclusion of the ex-firm investment level estimated

in the first stage.

Adoption is measured using output to capture both the extensive and intensive margin

effects. The shared information is likely most useful on the extensive margin when well
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design occurs. However, I don’t want to exclude improvements such as workovers of com-

pleted wells. Because oil output declines at such a steep rate over time, spillover effects on

completed wells will naturally contribute less to adoption. I also include a control for age

to account for the fact that networks are unlikely to have the same impact on older wells.26

Xg,t andXi,t are a full set of geographic controls detailed in the appendix. The controls

Xg,t,Xi,t are measured at time t for both stages even though the first stage dependent

variable is the ex-investment level over the previous quarter. I do not change the controls

in the first stage because the 2SLS specification should use the same controls over both

stages. However, there is significant persistence in the firm and geography characteristics

so the controls are unlikely to be different between the current and lagged sets.

II. Main Adoption & Productivity Result

In the appendix, I include a discussion of the network estimates that come from the first

stage. In this main specification, those results only appear in the sorting. The summary

statistics are also included in the appendix. The baseline results test the main specification

in equation 4 given by

IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

Ai,g,t = α+ βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage)

log(Ow,t) = ω + βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage′)

There are two different second stage specifications considered. The first studies adop-

tion rates and the second considers productivity. Table I reports the results from the

network estimated using well-level baseline productivity Y = Qw as the dependent vari-

able and the firm skill vector S as the indirect effect.27 I will refer to this as the Q-skill

sort in the sequel. The first panel shows the inverse-distance-time weight matrix and the

second panel shows equidistant networks. In the second row of the first panel, the second

26The appendix includes analyses done using firm-month-investment level instead of output based adop-
tion specifications for robustness.

27The appendix contains these results with a Wald test between each network quartile to consider the
statistical significance of the differences.
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stage coefficient of adoption rates on ex-firm investment, ν̂netnm is largest for n = 3, 4

although the results are not monotonically increasing in networks. Estimated νnetn is

0.00016 and −0.000046 in the two weaker network areas. In the two stronger network

areas, the coefficients are 0.013 and 0.00022 respectively. All the studies are conducted

at the well-month level with a control for log(Age).28 To interpret the results, recall the

construction of adoption rate,

Ai,g,t =
OH

i,t

Oi,t︸︷︷︸
New Technology Ratio

−
OH

i,t −OH
i,g,t

Oi,t −Oi,g,t︸ ︷︷ ︸
New Technology Ratio w/out county g

The first term, new technology ratio, is bounded by {0, 1} where 1 denotes firms who

produces 100% of its output from new technology. Suppose this same firm has county g

adoption rate of 0.05. Then, without firm i’s output from county g, its technology ratio

would have been 5% lower at 95%. Now, consider the coefficients in networks 3 and 4.

The contribution of area g to firm i’s technology ratio is 0.02% to 1.3% higher in response

to each additional well (as instrumented in the first stage) drilled by other firms in the

county. On average, the ex-firm investment levels in buckets three and four 40 so the

actual effect is likely to be much higher than 0.02%.29 Using a conservative estimate of 20

ex-firm investments, the predicted adoption rate impact from network effect is 0.4%, 2.6%

in buckets four and three respectively. Relative to the sample average of Ai,g,t = 4.1%,

these effects in network buckets 3 and 4 represent a meaningful increase.

The results from the first stage are reported in the first row of the panel. The direc-

tions of the coefficients are consistent with the hypothesis, investment levels are higher in

quarters when there are more leases due to expire. Across the network buckets, there is

no correlation between the first stage results and second stage results. The most sensitive

investment levels are in buckets 1 and 2 even though the second stage coefficients are low-

est there. This assuages concerns that the impact of ex-firm investment on the adoption

rate in the second stage is due to the magnitude of the first stage estimates.

28The results contain the same set of firm and geography level monthly controls in both stages and all
the results are clustered at the well-level.

29Of course, the effect is unlikely to be linear so we should not interpret the real average effect as 40× ν̂.
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The second panel of table I shows the results on productivity. The specification is the

log version of Arp’s production function with the instrumented ex-firm investment, ÎHi,g,t,

added in. The results are increasing in networks. The coefficient in network bucket 1 and

2 are 0.00071 and 0.00068 respectively while the corresponding number in buckets 3 and

4 are 0.076 and 0.011 . Productivity does not need to be higher to drive firm adoption

decisions, firms may simply take advantage of networks because it is less costly to drill

in high network areas. These results show that there is a productivity rationale for the

adoption results in the first panel for this network sort. This log form of the production

function lends itself to simple interpretation by incorporating this effect into the functional

form. Figure 6 plots the production function

Yt = exp(Q̂w + β̂log(Agew,t) + ν̂netn ÎHi,g,t)

The plots show outputs for an average well drilled in a high vs. low spillover area.

Q̂w, β̂ is set to the average overall wells in the sample. ν̂net3 = 0.076, the estimated result

from the top panel of table I. Similarly, ν̂net1 = 0.00051. I set ÎHi,g,t = 30 which is the

average number of ex-firm investments per quarter in the sample. The third panel of the

figure shows the difference in cumulative output between the two hypothetical wells. At

60 months which is towards the end of a well’s life, an average well in a lower network area

will have produced 148,530 barrels of oil . By contrast, the average well in a high network

area will have produced 1.2 million barrels. The difference throughout the wells’ produc-

tion life is almost 1 million barrels of oil. This is a simplified version of the production

function so the estimated difference should be viewed skeptically. However, it illustrates

the impact of the network effect. Because the functional form sets up the network effect

as a multiplier on lifetime production, even with the decline rate, the effect is for every

month of a well’s producing life. Cumulatively, the effect can be large and persistent.30

30Replicating the same experiment with the coefficient from network 4, the lifetime difference in pro-
duction is 54,934 barrels of oil which is significantly smaller.
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A. Alternative Explanations

The weight matrices in the spatial panel model are not just a statistical detail, they reflect

economic assumptions about the nature of the spillover. The second panel in table I uses

an equidistant weight matrix in the spatial panel estimate. It looks for evidence that clus-

tered investments are more productive without any additional knowledge based structure.

In the specific oil and gas example, a simple version of this contagion could just be that

the underlying geology is naturally more productive. The weight assigned to all influence

wells is 1
F where F denotes the number of influence wells drilled in the county within three

quarters of well w.31 In this set of results, the coefficients in increasing network order are

−0.0011, 0.00015,−0.0030,−0.0018. Network buckets 3 and 4 have the lowest sensitivity

to ex-firm investments and is lower in magnitude than Network bucket 1. The first stage

of this test are similar with the baseline so that cannot account for the differences in the

second stage.

Concern that the adoption reaction is driven by contagion does not seem to be the case

as the trend doesn’t replicate in the equidistant sort. The last results row of panel 2 shows

the productivity results from the equidistant network sort. The second stage coefficients

here are strongly increasing in network sorts. As other firms invest more, wells in high con-

tagion areas are more productive. Despite that, there is no corresponding drive to adopt

as a result. The productivity result reiterates that there are many ways in which produc-

tivity is improved by spillovers. However, the nature of the spillovers, exemplified by the

network weighting assumption, matters. In the knowledge-based networks of the main

result, the externality is directly beneficial to firms who are considering new technology

adoption. When the network type does not clearly emit this benefit as in the equidistant

case, there’s no diffusion impact even though the investments are more productive. Table

IV shows a version of this specification for the strongest network areas, bucket four, only.

It compares inverse-distance-time and equidistant networks and includes an indicator for

the inverse-distance-time network interacted with the continuous skill variable of the op-

erating firm. In columns 1 and 2 which studies output and efficiency, the interaction term

shows a negative coefficient for knowledge based networks as compared to equidistant

31I limit the time to three quarters because I can’t discount older wells here. Geographies with a long
history and more investments may also be more productive and I don’t want that confound.
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ones. Individual firm skill is more important to productivity in the equidistant network

areas. The results suggest that the contagion (equidistant) networks are at least partially

attributable to skilled firms clustering together around favorable geographies. The oppo-

site is true for the knowledge (inverse-distance-time) networks because firms can efficiently

learn from other firms regardless of their own skill.

Table II shows results for the baseline productivity specification using the older, con-

ventional wells instead of horizontal wells. As before, the matrix in the spatial panel

model is inverse-distance-time weighted. The methods and skills around the older tech-

nology should be better established. Therefore, there is little to learn from other firms

and there should be little knowledge-based reasons for investing when other firms do. This

test using older technology does not preclude other spillover benefits such as cost savings.

The first panel shows the results for productivity. The second panel shows the results

on firm-county investment levels measured in total firm-month-county drilling activity.32

First, there is no trend in productivity. Increasing investment by other firms generally

has a negative effect on well output. In the second panel, the investment level results are

noisy and not significant. Even taking just the coefficient magnitudes into consideration,

there is no trend across network quartiles.

B. Data Availability

Table III presents the baseline results using the data availability matrices Az in the net-

work analysis. The spatial panel model for data availability is amended as such,

Yg = γg1WYg +Xg
t γ

g
2 + βg

1WAz1 + ν

...

Yg = γg1WYg +Xg
t γ

g
2 + βg

kWAzk + ν

where k denotes the total number of auxiliary well design details available. The

vectorAzj | contains a “1” if that variable is available and “0” otherwise. The analysis

is done separately for each of the k variables and then an average of β̂g
zj is taken as the

32This is used in place of adoption rates as the concept makes less sense in the old technology context.
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network indicator for county g. As with the skill variable, this analysis uses the point

estimate, retaining β̂’s even if they are not statistically significant. The first panel shows

the adoption results. Each of the second stage coefficients are negative and statistically

significant except for the results from network bucket 4 which is positive and significant

at 0.0037. The reason for this higher adoption sensitivity in network bucket 4 and none

of the others is more complex than the trend in the skill-based measures. The second

panel shows the productivity results for the availability networks. Unlike the skill-based

network studies reported in table I, the largest second stage coefficient is in the second and

third network buckets as opposed to the third and fourth. There is not a strong case to be

made that there is a productivity rationale for the result in the strongest availability-based

networks. Intuitively, it is unsurprising that firms react to an increase in available data

even if the effective deployment of that data can be noisy.

C. Mechanism and network formation

The appendix shows results exploring the mechanism and network formation. I use proxies

for well complexity and drilling costs to study how firms execute on the network effect.

In particular, I show that the productivity gains tend to achieved through less complex

but slightly more expensive wells. Despite that, a carefully measured, per capital unit

measure of output efficiency is shown to improve significantly across the network sorts. I

also explore how networks which manifest in more productive wells , the Q-skill sorts, are

related to networks formed by design imitation. In other words, are areas where drilling

near skilled firms result in more productive wells also areas where people tend to drill

more complex wells when skilled firms are nearby?

III. A new Model of Technology Diffusion

The empirical results using this network sorting method new method provides evidence

that shared knowledge affects firm adoption decisions. To understand diffusion as a mech-

anism for technology change and economic growth which can help explain trends like

the fracking revolution, a new model of firm investments which incorporates this adop-

tion dimension is needed. In this section, I develop a continuous-time, dynamic model of

heterogeneous firms who face both the classic investment with convex adjustment costs
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problem and a technology decision. The production function is a generic “Ak” model so

that the results can be applied and tested broadly in future work.

There are several goals for this theoretical discussion. First, shared information can

be useful in a number of ways. It can improve the efficiency so that each unit of capital

produces more output or it can lower the adjustment cost of installing new capital. The

empirical setup remains agnostic about the specific mechanism partly because the data

cannot perfectly measure all of these.33 In the model, I carefully consider these differences.

The model also revisits the idea of internal capital allocation explored in papers such as

Bakke and Gu (2017). I show two different ways of modeling the technology problem

within firms and illustrate the different implications for technology change. Finally, I

compare the transition dynamics for both investment levels and adoption rates between

these varying assumptions. In particular, I show how the old technology fares in these

scenarios which is of interest in applications like the transition to clean energy.

A. Model Set Up

This section describes the two main models studied. The first is referred to as the “sepa-

rate capital” model. This version views different types of capital like business lines within

a corporation. Firms make decisions regarding each individual capital type investment

based on the marginal value of adding one unit of that capital while keeping in mind

a firm-level adjustment cost which reflects overhead applied when shifting a firm’s re-

sources. The second is called the “technology adjustment” model. Here, firms are defined

by their technological sophistication which directly impacts their productivity and adjust-

ment costs. They make an overall investment level decision for the firm, then allocate that

investment based on their chosen technological sophistication.

Separate Capital Model Firms are faced with two different types of capital which

produce a single, homogeneous output. The two types differ in their productivity and are

33There are estimates where the first stage network assumptions are changed. For example, one set
considers network effects in drill times.
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indexed by {o, n} for “old” and “new”. The firm problem is,

max{xo,xn} zznk
α
n + zkαo − xo− xn− θ

2

(
xo
ko

)2

ko −
θck
2

(
xn
kn

)2

kn − θck
2

(
2γ′

)2
k

zn = Kν , ck = Kt,K =

∫
kngdkn dko dz

dz = µ(z)dt+ σ(z)dWt

(Model 1)

I’ve suppressed the time subscript in this notation for simplicity. K is the aggre-

gate amount of new capital stock in the economy, g denotes the distribution over capital

stocks. z is the general productivity process which applies to both types of capital. It is

Ornstein-uhlenbeck in levels. zn ≡ z. ∗Kν is an additional productivity parameter which

applies only to the new technology. xo, xn are the investments in levels. These are subject

to convex adjustment costs where θ is the adjustment cost for both types of capital but

new types have an additional cost parameter, ck. The additional cost is a function of

aggregate new type capital. The model also features a firm-level adjustment cost over γ′

which denotes the change in the technology ratio kn
kn+ko

as a result of investments xn, xo.

I consider two scenarios. When spillovers have a positive “cost” effect because one can

learn from other firms, it lowers the adjustment cost for firms who want to install the new

type of capital and t < 0. Investing can also be more costly when there are more firms

competing for suppliers or land. In this case, t > 0.

The individual state variables in this model are (kn, ko, z) where z includes an idiosyn-

cratic productivity shock in the process. The aggregate state variables are K, g() where

K =n gdk is the aggregate new type capital stock installed in the economy and g is the

distribution over firm types.
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Technology Adjustment Model A second formulation of the problem is given by,

max{x,γ′} znk
α − x− θck

2

(x
k

)2
k − θck

2

(
2γ′

)2
k

zn = Kνγ , ck = Ktγ

K =

∫ ∫ ∫
kngdk dg dz, γ =

kn
ko + kn

dz = µ(z)dt+ σ(z)dWt

(Model 2)

Firms decided their total investment level, x, over the entire firm. They then sep-

arately make a decision regarding how to allocate their resources between the old and

new technology. γ ∈ (0, 1) determines the firm’s technology ratio. Productivity gains and

cost benefits from the new technology, zn, ck, are both scaled by the firm’s technological

sophistication. In other words, firms are more productive if they are more technologically

sophisticated. The adjustment cost of investment is also scaled by ck. However, there’s

an additional adjustment cost given by, θck
2 (2γ′)2 k. To understand this, consider a firm

at time t who has chosen to change their technological sophistication by γ′. They would

have to increase (decrease) their new technology stock by kγ′ and increase (decrease) old

technology stock by k(1 − (γ + γ′)) − k(1 − γ) = −kγ′. Scaling the adjustment cost by

the total capital stock, θck
2

(
2γ′k
k

)2
k gives the equation in model 2. The intuition behind

these two models are discussed with the results below.

Solution Overview: I reserve the full HJB and the discussion of the solution method

for the appendix. Here, I give an overview of the results depicted in the paper. To solve

the problem, I use finite-difference to solve for the steady state solution. The equilibrium

K for the steady state is given by the fixed point K = f(K) where f is firm maximization

problem solved over the entire distribution of firm types. I follow the method described

in Achdou et al. (forthcoming) when solving for the steady state g. Intuitively, the steady

state g solution is found when the kolmogorov-forward equation implies no more movement

in the distribution given the solution to the firm problem f . To study dynamic transition

paths, I consider an “MIT shock” to the long run mean of z or the standard deviation σ.
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In the sequel, I’ll refer to this as the “productivity shock”. In math terms,

dzt = κ(µ− zt)dt+ σztdWt

I solve for the steady state given µ0, then I solve for the steady state given a shock

to µ1. I then iterate through possible transition paths using the time-dependent value

function iteration and kolmogorov-forward equation to find solutions Vt(kn, ko, z),Kt, gt

until the transition path converges.34.In the solutions below, I show comparative statics

between the separate capital and technology adjustment models. I also vary the parame-

ters of ν and t to analyze each individual mechanism.

B. Internal Capital Allocation & Mechanisms

Figure 7 shows adoption rates for the separate capital and technology adjustment models.

The plot shows the transition paths after ashock to the long-term mean of the produc-

tivity process, µ. The results are for the productivity only model with ν = 0.05, t = 0.

Both economies settle into a long-term adoption rate of zero. Technology ratios, γi stop

moving around and firms continue to make investments based on a new ratio. The mech-

anism for reaching the new steady state differs between these two models. The second

and third panel plotting capital paths for new and old types illustrates this.35 In the

separate capital model, the productivity shock results in higher investment levels in both

types. However, the rate of increase for new type capital is initially faster due to zn = Kν .

Therefore, adoption rates are positive but declining because the the marginal benefit from

zn declines as K increases. The technology adjustment model is different. Firms benefit

from the spillover captured in zn = Kν by shifting their technology ratio. The entire

firm is more productive if it gets rid of its old technology. Thus, the path to the new

adoption rate of zero is driven by a true technology transition, the aggregate shift away

from old technology and into the new. Note that disinvestment is allowed in both cases so

firms could also shift away from old technology in the separate capital case. But there’s

no benefit because the opportunity cost of not investing in the new technology does not

exceed the benefit of an old technology which is still productive.

34The method is proposed by Achdou et al. (forthcoming)
35Note that I’m showing the capital stock and not investments but the trend looks similar
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While the results are intuitive mathematically, it’s worth discussing the real world mo-

tivation behind these assumptions. The separate capital case is more likely to reflect large

conglomerates who operate each business line like an independent business. Smaller firms

where different business lines share resources are more likely to look like the technology

adjustment case. For example, consider an energy firm that can only afford to hire one set

of engineers to work on all wells as opposed to British Petroleum who can hire different

engineers for different types of wells. Continuing to operate the old technology is costly

for the smaller firm as the new technology becomes more productive.

For internal diffusion (as opposed to a Schumpeterian, creative destruction model)

to lead to a technology transition, the industry needs more small firms which look like

the technology adjustment model. Thus, industries which are not dominated by large

multi-business conglomerates are more susceptible to aggregate energy transitions through

diffusion. This does not mean that the new technology does not grow with larger, sepa-

rate capital firms. Rather, the growth in new technology complements industry growth

overall. This has particular implications for the clean energy transition. One view of

this trend is to look at how energy is produced and compare fossil-fuel companies with

renewable energy producers like solar and wind. In that case, the adoption is unlikely to

be internal as most firms do not produce both fossil fuel and renewable energy. However,

the clean energy transition also relies on firms in many industries changing the way that

they produce. One thought is that cleaner manufacturing processes will become more

productive and firms will retire older, browner methods. For example, the utility sector

which provides energy for households is one area that could face such an internal adoption

problem. The results from this model suggest that sectors with more concentrated, larger

firms will be unlikely to make this transition on their own, even with the benefits of shared

knowledge networks in the new technology. Regulatory action is needed whereas it is not

as important in industries dominated by smaller firms.

This difference between the models does not hold in the case with cost spillover, t <

0. Figure 8 shows the transition paths for these models. In both cases, there is an

increase in both new and old type capital shown in panels two and three. Old type capital
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increases due to the productivity shock in the long-run mean of z. The spillover benefit

to adjustment costs does lead to small increases in the new type capital investment but

it is extremely small. The aggregate new technology ratio never reaches a rate above 5%

in this model. The spillover cost effect for the separate capital case is even smaller to the

point that aggregate adoption actually decreases. The productivity shock to both capital

types far outweighs the cost benefit of lower adjustment cost to new technology. As a

result, firms do not shift their investments in that direction and average adoption rates

decline.

C. Investment effect on Diffusion

Because the model does not emit analytical solutions, it’s difficult to analyze the ∂γ′

∂K ,

the rate at which adoption (and other aggregates) change when investment levels shift.

In this section, I re-solve the partial equilibrium of each model, taking the aggregate K

as given rather than endogenous. The results for both the technology adjustment and

separate capital model is shown in figure 9. The plots show the technology ratios for

both the old steady state with µ = 0 and the one after the productivity shock. The

technology adjustment model is much more sensitive to tipping into the new technology

regime where most of the capital stock is in kn. Because spillover is modeled as Kν , it is

unsurprising that any K > 1 will tip the model. In the productivity only case, any tipping

into a slight advantage for technological sophistication, tends to end up in full diffusion.

Endogenously, the economy does not always end up at the tipping point, even with the

productivity shock. Figure 10 shows the transition path for diffusion levels (average tech-

nology rates in the economy) for the technology adjustment model. The top panel shows

the productivity only version. At the old steady state, the economy had not tipped yet so

aggregate diffusion is only at 10%. With the shock, the economy eventually reaches the

tipping point. For the cost spillover (t < 0) model, the economy does not ever tip into full

diffusion even with the productivity shock.

The separate capital model is much more sensitive to aggregate investment activity.

With the same set of K’s as the technology adjustment model, diffusion never exceeds 70%

and it is clearly increasing in K. Additionally, the old steady state version with µ = 0

exhibits lower diffusion levels than the new steady state after the productivity shock. In
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other words, the diffusion level for the separate capital model is elastic to both aggregate

investment activity and the general productivity process. This complements the policy

discussion above. Suppose the government wants to subsidize new technology investments

with the hope that it creates knowledge spillovers which will tip firms into adopting the

new technology. The comparisons here suggest that a small subsidy will have a large

effect for smaller firms that mimic the technology adjustment model. On the other hand,

diffusion amongst multi-business firms do react to higher aggregate investment activity

but it will not reach full diffusion as quickly or easily.

D. Firm Heterogeneity

In addition to the impact of aggregate investment levels on diffusion, one other important

partial equilibrium outcome from this model is heterogeneity in adoption. Figure 11 shows

adoption rates over the distribution of firm types. The technology adjustment model is

over the (firm size, technology ratio) state space while the separate capital model is shown

over the (new capital, old capital) space. The results are for one realization of productivity

z at one time period in the transition t = 30 between steady states. Figure 12 plots the

corresponding new investment levels. The results are helpful for developing empirical tests

of the models as they show drastically different patterns over the state space. Further,

firm size and technology ratios can be observed empirically in many cases.

The technology adjustment model shows a smooth pattern. Adoption rates are highest

for small firms. As expected, the effect declines for more technologically sophisticated firms

since the marginal benefit adopting decreases. In the separate capital model, adoption

rates also tends to be higher for low specialization forms. However, the result interacts

differently with firm size. First, a 45-degree line over the x-y or (new technology, old

technology) dimension marks the firms who are evenly split in their technology ratio. To

the right are those with technology ratios < 0.5 and to the left are those with ratios > 0.5.

As you move to the right where firms are less technologically sophisticated, the adoption

rates are increasing. As you move to the left, they tend to be lower. However, the adoption

rates are not decreasing in firm size as it is in the technology adoption case. As a clear

example, return to the 45 degree line. All firms on this line have the same technology ratio,

50%. However, as you move up the line towards the far corner with kn = 100, ko = 100,
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the adoption rates are increasing as firms get larger. Holding kn constant at any given

kn level, the adoption rates are increasing in ko. The same is generally true holding ko

constant.

It’s worth carefully considering what is driving the shape of these adoption surfaces by

studying the corresponding investment behavior. In addition to being informative, they

provide another layer of testable empirical predictions. Figure 12 shows the investment

levels for both capital types in the separate capital model. The solution is not as smooth

for small firms or firms with very low old technology ratios. However, an intuitive trend

appears. Firm investments in new and old technology are driven by their size. Old

technology investment is decreasing in ko and vice versa for kn. The derivation for the

investment policy function used in the finite-difference problem is given in the appendix.

Intuitively, in the separate capital case, the investment decision is largely driven by the

marginal value of new and old type capital individually which leads to this result. The

slope of the individual curve, (∂xn
∂kn

|ko , ∂xo
∂ko

|kn), is driven by the productivity of new type

capital and slightly impacted by the firm-level adjustment cost over γ′. Because z appears

in the productivity of both types, the slopes look similar. In the top panel depicting

new type investment, the spillover impact is visible. As kn increases, the spread over

the no spillover benchmark is wider and the slope is less steep. By contrast, the old

type investment in the bottom panel is virtually indistinguishable from the no-spillover

benchmark. One supplementary empirical test of the two models is to examine adoption

rates within firms of similar old or new type capital.

IV. Concluding Remarks

Network effects are a natural mechanism to consider when studying endogenous technology

diffusion. However, the dynamic nature of the problem makes it difficult both empirically

and theoretically. Using a recent, salient example of technology diffusion in the American

oil & gas fracking revolution, this paper develops an empirical framework for quantifying

the impact of shared knowledge on adoption decisions made by firms. A spatial panel

model is used to categorize counties based on their network strengths. Then, I compare

firm behavior across these networks there is an exogenous change in information flow.
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When data leakage occurs as a result of investments, exogenous variation in investment

levels is shown to disproportionately impact adoption decisions when networks are strong.

I then move to consider what this effects means for aggregate technology diffusion. I

introduce a model where firms face the classic investment problem while incorporating a

technology adjustment dimension. I show that how we model the firm internal capital

allocation problem has important implications for aggregate technology change. Addi-

tionally, the mechanism for knowledge spillovers also matters for aggregate technology

transition. Increasing productivity which disproportionately impacts new technology does

not necessarily lead to a transition away from the old technology.

One shortcoming of the approach in this paper is that the opportunity costs of invest-

ing in old technology when new technology is improving ins not captured well. I include

firm-level adjustment costs over the adoption rate but this is imperfect. Future work

should consider a budget constraint on the firm. By limiting the resources for investment,

the opportunity cost would be better incorporated and the energy transition may become

more pronounced.

Further research could also expand the empirical methodology and apply it to other

innovative sector. For example, I take a literal view of networks in the spatial panel

model. A deeper consideration of network formats in other sectors could produce more

interesting views on what is a “knowledge-based” network and how it differs from other

forms of spillovers. Where the energy sector is concerned, spillovers in renewable energy

and sectors like electric utilities where firms face these internal adoption decisions would

be of interest to environmental economics and policy makers. The method could also

be applied to study effects other than information flow. For example, one could look at

regulatory changes applied to high and low network areas.
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V. Figures & Tables

Figure 1: Productivity and Adoption trends over time

The two figures are derived using the full sample of horizontal and vertical wells
drilled and operated in the lower 48 states. The top panel plots the coefficient γ from
quarterly regressions of the following form for well w and month t,

log(Ow,t) = α+ βlog(Agew,t) + γ1{horizontal} + ϵ

The regressions are conducted each quarter at the well-month level. 1{horizontal} is
an indicator variable equal to one when the well is drilled using the new, horizontally
fracked technology. The specification is a simplified version of the Arp’s production
function, a typical formula used by geologists to model oil output.
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Figure 2: Geography heterogeneity in knowledge sharing propensity

The figure is pulled from Enverus analytics. It depicts the surface location of wells
drilled in the Bakken shale of North Dakota and the Barnett and surrounding shale
in Texas. The colors depict the depths of the wells drilled. There are significant
geographic differences in both the variance of depths as well as the spacing of wells
across the two regions. North Dakota in the top panel features well-lined wells with
homogeneous depths. Texas in the bottom panel features more differences in depths
as well as the surface locations of wells.

Note that this is not meant to suggest that one region is easier to drill or more
productive. Rather, areas differ in the usefulness of other firms nearby. In North
Dakota, it is likely more predictable on average. However, in Texas, there will be
more information which can be used by other firms.
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Figure 3: Thought Experiment for two-stage empirical setup

The picture is a graphical representation of the thought experiment underpinning the
main empirical specification. Despite the motivation for cross-sectional differences in
network strengths, the econometrician does not know which is the higher knowledge
sharing area. The first task is to estimate that network strength. Then, when invest-
ments decline, a node is essentially detracted from each network. The area with the
stronger network should be disproportionately impacted by that decline.
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Figure 4: Spatial lag model illustrated

The picture is a graphical representation of what the spatial panel model using skill
as an indirect variable estimates. It describes intuitively how to think about why βA

would be different than βB . The econometric details are available in the section on
the spatial lag model in the main paper.

37



Networks & Adoption Chau

Figure 5: Long term oil price trends with Markov Switching

The figure shows the WTI oil spot price in blue. Its corresponding y-axis is on the
right. In red are the estimated probabilities from fitting a two stage Markov switching
process to the data. Two large structural breaks can be seen. Between 2010-2015,
the model estimates a low consistently low probability of being in the low state. The
period from 2015 to 2018 shows consistently high probability of being in the low state.
The two regimes depicted will be used to instrument for investment levels over those
two, long time periods.
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Table I: Main results: Network effects on adoption and productivity

Horizontally Drilled Wells: 2014Q4 - 2020Q1

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Inverse-
distance-

time
network

Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2:

(1) (2) (3) (4) (5) (6) (7) (8)

Inverse-distance-time network: first stage

Lease
Expirations #

0.011*** 0.038*** 0.0020*** 0.0012***
(0.00045) (0.00025) (0.00014) (0.000025)

Adoption Results

Ex-firm
Investment

0.00016*** -0.000046*** 0.013*** 0.00022***
(0.000015) (0.000013) (0.00088) (0.000030)

Productivity Results

Ex-firm
Investment

0.0051*** 0.0068*** 0.076*** 0.011***
(0.0013) (0.00023) (0.0058) (0.00069)

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Equidistant
network

Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2: Stage 1:
Ex-firm

Investment

Stage 2:

(1) (2) (3) (4) (5) (6) (7) (8)

Equidistant network: first stage

Lease
Expirations #

0.015*** 0.033*** 0.028*** 0.00084***
(0.00025) (0.00046) (0.00021) (0.000025)

Adoption Results

Ex-firm
Investment

-0.0011*** 0.00015*** -0.00030*** -0.0018***
(0.000050) (0.000011) (0.000020) (0.00010)

Productivity Results

Ex-firm
Investment

0.00071 0.0085*** 0.012*** 0.015** *
(0.0012) (0.00033) (0.00029) (0.0011)

Firm Controls Yes Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes
SE Cluster Well-level Well-level Well-level Well-level Well-level Well-level Well-level Well-level

Notes: The table shows results from the 2sls specification:

IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

Ai,g,t = α+ βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage)

log(Ow,t) = ω + βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage′)

continued below
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Table I: Main results: Network effects on adoption and productivity (cont’d)

Notes: The first row of each panel shows the first stage results of ex-firm investment levels on
the number of leases expiring in the county that quarter. The second rows shows second stage
results of adoption on instrumented ex-firm investments while the third row shows productivity
as the main variable of interest. The regressions are conducted at the individual well-month
level, sorted into four network buckets based on the county where they are located.

The first panel sorts counties based on inverse-distance-time weight networks which captures
the depreciation of useful knowledge as distances and time increase. The second panel shows
results when networks are sorted based on equidistant weights. This network is used as a
comparison to test the results. Unlike knowledge-based networks, this is more likely to capture
general contagion or other spillovers which are distance-neutral. All regressions contain the
same set of firm and county level controls which are detailed in the appendix. The standard
errors are clustered at the well-level. The results do not include the early time period when oil
prices were increasing as the technology was just beginning to develop, they start in 2014Q4.

Adoption rates are measured at the firm-month-county level.a The equation for adoption rates
is,

Ai,g,t =
OH

i,t

Oi,t︸︷︷︸
New Technology Ratio

−
OH

i,t −OH
i,g,t

Oi,t −Oi,g,t︸ ︷︷ ︸
New Technology Ratio w/out county g

aThe main paper discusses why I use these firm-level results with a well-level specification.
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Figure 6: Simulated output with network effects

The three figures show simulations of the economic impact from network effects. The
top panel shows simulated monthly output using the Arp’s production model which
was estimated in logs based on the following specification,

Ow,t = QwAgeβw,t

log(Ow,t) = log(Q̂w) + β̂log(Agew,t) + ϵw,t

Each line shows the same baseline productivity rate Qw for a hypothetical well. All
wells share the same log(Q) = 9.5 which is the average in the data sample and
β = −0.6. I then plot,

Ow,t = exp(log(Q̂) + γ̂ksn × It + β̂ ∗ log(Agew,t))

with It = 30 which is the average ex-firm investment level in the sample. The high
spillover measure is has γ̂ = 0.011 and the low spillover has γ̂ = 0.00051 coefficients.
The second panel shows the cumulative outputs to simulate the total effect over time.
The third panel shows the cumulative output difference.
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Table II: Comparison of Network effects in Old Technology

Vertically Drilled Wells: 2008Q1 - 2018Q1
Productivity Results

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Conventional
Wells (Old
Technology)

Stage 1:
Ex-firm

Investment

Stage 2:
log(BOE)

Stage 1:
Ex-firm

Investment

Stage 2:
log(BOE)

Stage 1:
Ex-firm

Investment

Stage 2:
log(BOE)

Stage 1:
Ex-firm

Investment

Stage 2:
log(BOE)

(1) (2) (3) (4) (5) (6) (7) (8)

Lease
Expirations #

0.0029 0.11*** -0.0064*** 0.011***
(0.0032) (0.0048) (0.00054) (0.0020)

Ex-firm
Investment

0.37 -0.035*** -0.055*** -0.020**
(0.36) (0.0031) (0.012) (0.0065)

N 22690 22690 561281 561281 243452 243452 602758 602758
Underidentification 0.82 278.0 95.7 27.7
Weak identification 0.86 554.7 140.9 34.4

Investment Level Results

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Conventional
Wells (Old
Technology)

Stage 1:
Ex-firm

Investment

Stage 2:
Investment

levels

Stage 1:
Ex-firm

Investment

Stage 2:
Investment

levels

Stage 1:
Ex-firm

Investment

Stage 2:
Investment

levels

Stage 1:
Ex-firm

Investment

Stage 2:
Investment

levels
(1) (2) (3) (4) (5) (6) (7) (8)

Lease
Expirations #

0.011** 0.13*** -0.0048*** 0.033***
(0.0035) (0.013) (0.00047) (0.0043)

Ex-firm
Investment

-0.0073 0.00075 0.012*** -0.00029
(0.0046) (0.0010) (0.0033) (0.00062)

N 1008 1008 4401 4401 2852 2852 4841 4841
Underidentification 9.55 102.0 74.4 43.2
Weak identification 9.88 100.6 103.4 61.5

Firm Controls Yes Yes Yes Yes Yes Yes Yes Yes
Geography Controls Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table replicates the 2sls specification using the old technology, vertically drilled
wells.

IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

log(Ow,t) = ω + βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage′)

Because adoption is not a well-defined concepts for the old technology, the second panel shows
investment levels. This is defined as the total wells drilled by firm i in county g during month t
the investment level results are conducted at the firm-month-county level and standard errors
are clustered at the firm level. The productivity results are at the well-month level and standard
errors are clustered at the well-level. Both results use the same inverse-distance-weighted
network sorts from the baseline. However, the spatial panel model was estimated using only
the vertically drilled wells.
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Table III: Data Availability Measure: Network effects on adoption and productivity

Horizontally Drilled Wells: 2014Q4 - 2020Q1
Adoption Results

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Horizontal
Wells (New
Technology)

Stage 1:
Ex-firm

Investment

Stage 2:
Adoption
Rate

Stage 1:
Ex-firm

Investment

Stage 2:
Adoption
Rate

Stage 1:
Ex-firm

Investment

Stage 2:
Adoption
Rate

Stage 1:
Ex-firm

Investment

Stage 2:
Adoption
Rate

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument: Lease
Expiration

0.024*** 0.030*** 0.0028*** 0.0074***
(0.00052) (0.00072) (0.00032) (0.00013)

Ex-firm Investment
(prev qtr)

-0.00061*** -0.00015** -0.0012*** 0.0037***
(0.000029) (0.000052) (0.00030) (0.000094)

N 444461 444461 823175 823175 1395977 1395977 2053541 2053541
Underidentification 2415.7 1627.3 93.5 2841.4
Weak identification 2187.8 1700.2 80.1 3024.1

Productivity Results

Network Bucket 1 Network Bucket 2 Network Bucket 3 Network Bucket 4

Horizontal
Wells (New
Technology)

Stage 1:
Ex-firm

Investment

Stage 2:
log(boe)

Stage 1:
Ex-firm

Investment

Stage 2:
log(boe)

Stage 1:
Ex-firm

Investment

Stage 2:
log(boe)

Stage 1:
Ex-firm

Investment

Stage 2:
log(boe)

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument: Lease
Expiration

0.024*** 0.030*** 0.0028*** 0.0074***
(0.00052) (0.00072) (0.00032) (0.00013)

Ex-firm Investment
(prev qtr)

0.011*** 0.018*** 0.12*** 0.014***
(0.00060) (0.00098) (0.014) (0.0010)

N 444127 444127 822603 822603 1394652 1394652 2052986 2052986
Underidentification 2416.4 1625.9 93.1 2849.3
Weak identification 2188.6 1699.3 79.8 3033.3

Notes: The two panels replicate the baseline 2sls specification:

IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

Ai,g,t = α+ βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage)

log(Ow,t) = ω + βlog(Agew,t) + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t (second stage′)

The spatial panel model used to sort the networks regresses baseline productivity Q on the
auxiliary data availability measure instead of the skills of firms drilling nearby. The first row
of each panel shows the first stage results of ex-firm investment levels on the number of leases
expiring in the county that quarter. The second rows shows second stage results of adoption
on instrumented ex-firm investments in the first panel and productivity in the second. The
regressions are conducted at the individual well-month level, sorted into four network buckets
based on the county where they are located. Both sets of results use the inverse-distance-time
weighting matrix to sort networks.

Adoption rates are measured at the firm-month-county levela using

Ai,g,t =
OH

i,t

Oi,t︸︷︷︸
New Technology Ratio

−
OH

i,t −OH
i,g,t

Oi,t −Oi,g,t︸ ︷︷ ︸
New Technology Ratio w/out county g

aThe main paper discusses why I use these firm-level results with a well-level specification.
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Table IV: Skill Coefficient comparison between knowledge and equidistant networks

Horizontally Drilled Wells: 2014Q3 - 2020Q1

BOE-per-ft log(boe) interval (ft) drill time

Q-Skill
(1) (2) (3) (4)

Ex-firm
Investment

0.018∗∗∗ 0.014∗∗∗ -139.8∗∗∗ 3.23∗∗∗

(0.00083) (0.00087) (15.7) (0.73)

1{knowledge−based}
0.61 1.41∗∗∗ -54971.7∗∗∗ 1659.9∗∗∗

(0.40) (0.40) (6377.6) (288.9)

1{knowledge−based} × Skill -0.083∗ -0.14∗∗∗ 5190.5∗∗∗ -160.7∗∗∗

(0.038) (0.038) (595.5) (27.0)

N 6442066 6474411 61536 62035

Notes: The three panels show results from the following,

IHi,g,q−1 = η + βnetnLg,q−1 + Γ [Xg,t Xi,t]
′ + νg,t (first stage)

Yw,t = α+ β1{Skill based} × Skill + νnetn ÎHi,g,t + Γ [Xg,t Xi,t]
′ + ϵw,t

The specification is similar to the baseline. The analysis is limited to counties in network bucket
4. The variable 1{skill net} is an indicator variable which is one for counties in bucket 4 of the
inverse-distance-time weighted networks and zero for those in equidistant networks. Skill is the
operating firm’s quarter level ability measured by applying the Arp’s production function to the
full data sample,

log(Ow,t) = βlog(Agew,t) + ηi,q1{Firm i} × 1{q} + ϵw,t

The four dependent variables of interest include production efficiency, output, well complexity,
and drilling costs. The first two are conducted at the well-month level while the latter two are
at the well level. The first panel shows bucket 4 comparisons for the baseline productivity-skill
(Q-skill) networks, the second shows interval-skill, and the third shows drill time-skill networks.
The test considers the importance of firm-skill in knowledge based networks as compared to
general contagion. The Q-skill networks are the baseline sorts in the main analyses. The second
two study alternative network formations where well designs are influenced by the skill of those
drilling nearby.
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Figure 7: Transition dynamics for Productivity Only Model

The panel plots transition dynamics for the model where ν = 0.5, t = 0. The first panel shows adoption
rates which is measured by the new technology ratio as a result of investments in that time period minus
the firm’s previous technology ratio, kn

kn+ko
. The second panel shows average new technology capital stock

and the third shows old technology capital. Time period 0 reflects the old steady where µ = 0 in the
productivity process z. The dynamic transitions follow an MIT shock to µ > 0, the long-term mean of the
mean-reverting O-U process, z.Results are shown for the technology adjustment model and the separate
capital model.
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Figure 8: Transition dynamics for Cost Effect Model

The panel plots transition dynamics for the model where ν = 0, t < 0. The first panel shows adoption
rates which is measured by the new technology ratio as a result of investments in that time period minus
the firm’s previous technology ratio, kn

kn+ko
. The second panel shows average new technology capital stock

and the third shows old technology capital. Time period 0 reflects the old steady where µ = 0 in the
productivity process z. The dynamic transitions follow an MIT shock to µ > 0, the long-term mean of the
mean-reverting O-U process, z.Results are shown for the technology adjustment model and the separate
capital model.

46



Networks & Adoption Chau

Figure 9: Average Adoption Rate response to K, productivity only model

The two plots show diffusion level or average kn+xn
kn+ko+xn+xo

over all firms in the econ-
omy. The partial equilibrium results take aggregate K as given. The results are
shown for the productivity only model with ν = 0.05, t = 0. The points in blue show
the steady state technology ratio for the economy following the MIT shock with µ > 0
and the gray shows the case with µ = 0 in productivity process z.
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Figure 10: Transition dynamics of diffusion for Technology Adjustment Economy

The Figures show transition dynamics for the technology adjustment model. The top
panel compares the productivity only model, ν = 0.05, t = 0 with the no spillovers
benchmark. The bottom panel shows the cost benefit model with t < 0 to the com-
petition model with t > 0. The y-axes show diffusion level or average kn+xn

kn+ko+xn+xo

over all firms in the economy.
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Figure 11: Heterogeneity in Adoption Decisions

The two plots show snapshots of adoption decisions, γ′ = kn+xn
kn+ko+xn+xo

− kn
kn+ko

, over
the entire firm state space. The technology adjustment model in the top panel is
shown over the (firm size, technology ratio) space while the separate capital in the
bottom panel is shown over the (kn, ko) space. The surfaces compare the productivity
only model with ν+0.05, t = 0 to the no spillover benchmark. The result is shown for
one realization of z and one point, T = 30 in the transition between steady states.
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Figure 12: Heterogeneity in Investment Decisions

The two plots show snapshots of new type investment, xn, over the entire firm state
space. The technology adjustment model in the top panel is shown over the (firm
size, technology ratio) space while the separate capital in the bottom panel is shown
over the (kn, ko) space. The surfaces compare the productivity only model with
ν +0.05, t = 0 to the no spillover benchmark. The result is shown for one realization
of z and one point, T = 30 in the transition between steady states.
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