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Abstract

We provide a framework for extracting characteristics-based factors via Reduced

Rank Regression. This generalizes the Instrumented Principal Component Analysis by

Kelly et al. (2019), the Projected Principal Component Analysis in Fan et al. (2016b),

can accommodate cross-sectional and time-series dependencies, and recovers the closest

lower-dimensional approximation to GLS factors discussed in Kozak and Nagel (2023).

The asymptotic theory is derived and a bias in the IPCA inference is corrected. A sparse

design is introduced to interpret the factors. Our findings confirm that accounting for

cross-sectional dependence results in more efficient estimators leading to a better fit

and a higher spanning.
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1 Introduction

Since the publication of the seminal work of Fama and French (1993) there has been a

proliferation of studies about characteristics-based factors. Harvey and Liu (2022) document

that over 500 characteristics have been identified as possible factors in the literature that

can explain the cross-sectional variation in returns. Historically, testing of multi-factor asset

pricing models are done on portfolios of select stocks. To minimize the discretionary bias

involved in the selection of the stocks and the predictors, empirical asset pricing models now

directly use the entire cross-section of stocks and their associated characteristics.

In a recent study, Daniel et al. (2020) have shown that the mean-variance spanning

of characteristics-based factors is biased downward due to the presence of unpriced risk

and demonstrated how to construct hedge portfolios to attenuate the bias. Kozak and

Nagel (2023) recognize that a source of mean-variance inefficiency stems from the fact that

characteristics-based factors do not utilize the information from the covariances of the stock

returns. It is pointed out that GLS factors, the slopes of monthly cross-sectional GLS

regression of returns on characteristics, are indeed efficient. Because estimating a large

covariance matrix for GLS estimation is notoriously a challenging task, Kozak and Nagel

(2023) derive the necessary conditions for characteristics-based factors to be efficient, that

is, to reach the same spanning as the GLS factors without using the information from the

stock covariances.1 However, such conditions hold in rather special circumstances. In the

context of this study, it can happen only when the characteristics included in the model can

pick up all the priced risk factors, a fact that cannot be guaranteed.

The insights from these recent studies are developed at the population level, assuming

all parameters are known. Here we address the problem from an econometric perspective.

We develop a flexible model in the Reduce-Rank-Regression (RRR) framework to study the

sample properties of the estimators of characteristics-based factors. We further highlight

their connections to leading models such as the PPCA model by Fan et al. (2016b) and the

1For early work on the equivalence between OLS and GLS estimators see Rao (1967).
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IPCA model by Kelly et al. (2019). Specifically, we show that working directly with the

covariance of stock returns is critical. From the commonality studies, it is well-known that

the empirically observed covariances of stock returns play an important role in capturing

stock co-movements (see Hasbrouck and Seppi (2001)). From an economic perspective, our

setup shows how accounting for stock covariances can incorporate information about any

unpriced risk in the estimators for the characteristics-based factors, and thus guaranteeing

their mean-variance efficiency. Moreover, our model can strike a balance between maximal

mean-variance spanning and parsimonious use of characteristics-based factors. It extracts

the closest lower-dimensional approximation to the efficient estimators of GLS factors.

The main focus of cross-sectional models in studying the first two moments of the return

distribution can be rationalized by the existence of a stochastic discount factor (SDF), linear

in a set of characteristics-based factors. The existence of such SDF stems from the assump-

tion that the law of one price holds and market frictions (like transaction costs and price

impact) are negligible. When the return distribution is assumed to be stationary, the SDF

has a time-invariant structure and the equivalent factor model shares the same data gener-

ating process implied by the Arbitrage Pricing Theory (APT) of Ross (1976). The classical

RRR setup (see Reinsel et al. (2022), chapter 2) applies in such a context to models where

factors are based on a (large) number of common macro variables. If characteristics are al-

lowed to be stock-specific but static, Fan et al. (2016b) show that extracting factors through

principal components from projected excess returns delivers more accurate factors. The Pro-

jected PCA procedure (PPCA) is a non-parametric regression of returns on characteristics

and can be taken as a non-parametric version of a RRR model.

When the SDF structure is set to vary over time, the resulting conditional factor models

can accommodate the time-varying nature of the investment opportunity set. This can

be achieved by having stock-specific characteristics that vary over time and ascribing such

variation to the model intercept and factor loading matrix. Kelly et al. (2019) successfully

treat such characteristics as instruments and extract PCA-style latent factors by condensing

down the relevant pricing information from L characteristics to K < L linear combinations
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of them. As shown here in the RRR setup, such dimension reduction is possible due to

binding constraints implied via the rank of the regression coefficient matrix from a system of

T cross-sectional regressions that are appropriately stacked. Thus the IPCA model also has

an implied RRR structure and the determination of K, the number of factors, can be made

via a rank test. In the absence of the rank constraint, all L characteristics-based factors can

be extracted. The estimated regression coefficient in this case are the BARRA OLS factors

used in Fama and French (2020).

To summarize, with time-invariant asset characteristics and with homoscedastic errors,

our model can be taken as a linear parametric version of the PPCA model. If the characteris-

tics vary over time, we are in the realm of the IPCA model. By specifying the cross-sectional

dependencies in the error term with a positive-definite covariance matrix, our model gen-

erates for each time ‘t’ the closest K < L-dimensional approximation to the L-dimensional

vector of mean-variance efficient GLS factors. Specifically, we assume the same structure for

the GLS factor matrix as in the IPCA. This has two components: a time-invariant mispric-

ing factor representing the lower dimensional approximation of the vector of unconditional

expected values of the GLS factors and the product of a L×K factor loading matrix and a

K-dimensional vector of factors, which we refer to as the RRR factors. The loading matrix

maps the L stock characteristics into the K RRR factors (and can be equivalently thought

of as the loading matrix in a static factor model for L-dimensional factors) and the resulting

RRR factors capture the K most important innovations present in the GLS factors. Our

setup naturally relates the mean-variance efficiency of the extracted RRR factors to the

absence of mispricing. For the case of K = L the RRR factors are proportional to the mean-

variance efficient GLS factors, thus achieving the same mean-variance spanning, and at the

same time the mispricing factor is zero. When K < L the RRR factors are mean-variance ef-

ficient lower-dimensional approximations of the GLS factors only when the mispricing factor

is zero. Because the IPCA model assumes that the error covariance matrix is proportional

to an identity matrix, it follows that the IPCA factors can be taken as a lower-dimensional

approximation to the OLS factors, which are not mean-variance efficient. Finally, our setup
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can also handle time-series variation coming from the error term by imposing a VAR(1) or

other simplified structures on the error term as in DeMiguel et al. (2014), while still extract-

ing the lower-dimensional factors as in the IPCA, thus providing a robust approach to utilize

the empirical features of the data.

We derive the limiting distribution for the estimates of the parameters of the RRR

model. This allows us to employ directly closed form expressions for hypothesis tests that

are computationally less intensive. In Kelly et al. (2019), a Wald-type test for mispricing is

suggested, however the test appears to have a bias due to an incorrect assumption made on

the data generating process. The result from the limiting distribution enables us to correct for

the nontrivial bias present in the inference based on bootstrapping samples. The suggested

correction realigns the IPCA model results with the results using the correct data generating

process. In the spirit of Cochrane (2011)’s presidential address, to better understand which

characteristics matter the most, we augment our RRR model, which provides the dimension-

reduction, with sparseness methods that address the variable selection problem. Specifically

we place a LASSO penalty on the factor loading matrix which maps the L characteristics to

the K-RRR factors. In this context, the sparseness structure of the columns of the loading

matrix isolates the driving characteristics behind each extracted factor and thus provides a

way to interpret the extracted factors themselves.

To assess the performance of the RRR model, we use the same data considered in Kelly

et al. (2019). This includes monthly returns and 36 asset characteristics for approximately

10,000 U.S. common stocks between July 1962 and May 2014. The characteristics do gener-

ally exhibit significant time variation (making an IPCA/RRR model structure more suitable

than a PPCA one). We account for the cross-sectional covariances through an industry-wide

block-diagonal structure for the error covariance matrix. Industry-wide clustering is moti-

vated among other studies, from the observation made in Daniel et al. (2020) that industry

exposure represents a source of unpriced risk and it also reflects the natural structure of the

stock market. We select an industry structure that provides the best in-sample fit (GLS

R2, BIC and AIC) and results in the best mean-variance spanning (maximal Sharpe ratios).
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Under this structure, we show empirically that feasible versions of the GLS factors result in

a higher mean-variance span and fit than the OLS factors and than the OLS-hedge factors

proposed in Kozak and Nagel (2023) and Daniel et al. (2020). More generally, if at least five

factors are extracted, the RRR model without mispricing always displays the best fit and

spanning. What mainly drives these results is the higher efficiency of the GLS estimators;

The higher spanning of the factors that use GLS estimators come from lower volatilities in

the tangency portfolios (the denominator of the Sharpe ratio). As a matter of fact, the tan-

gency portfolio averages are found to be generally lower for GLS factors than OLS factors.

According to the mean-variance theory these results imply that investors who have access

to a better proxy for risk (through the residual covariance matrix specification of our setup)

should become more cautious in taking on risk.

The model that strikes the best trade off between parsimonious number of factors and

mean-variance spanning is the RRR model with five factors (and no mispricing factor). Such

a model is shown to outperform the IPCA analog which in turn Kelly et al. (2019) show

to outperform the CAPM and the Fama and French (3 through 6) factor models. The

sparseness as well as the validation analysis are then carried out on the best model directly.

The sparseness analysis of the RRR model reveals a much simpler factor structure than the

sparseness structure that is detected for the IPCA model, that lends itself to an elegant

interpretation: we are able to identify the first factor as the market, the second as size,

the third and fourth as momentum and the fifth as illiquidity. The superior performance

of the best RRR model over the IPCA analog is confirmed both out of sample and via

simulations. We provide two types of out of sample validations: a cross-sectional design

where the model is estimated using a random subsample containing 80% of the available

stocks and then the model is tested on the excluded 20% of the stocks; and a time series

design where the model is recursively estimated over a 20-year rolling window and tested

over one-month-ahead forecasts. Simulations also confirm that the RRR model is stable and

gets closer to the true data generating process. In general, the superior spanning comes from

the lower variance of the RRR estimators but the tangency portfolio averages are generally
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found smaller confirming the in-sample pattern supporting the fact that investors having

access to a better proxy for risk appear to be more risk averse.

There are some recent studies that have focused on conditional asset pricing modeling

with a large number of asset characteristics using both parametric and non-parametric meth-

ods. The non-parametric methods such as splines, adaptive group LASSO, etc are shown

to result in better out-of-sample predictions of the conditional returns. Freyberger et al.

(2020) use 62 asset characteristics and isolate the power of individual characteristics to fore-

cast future returns. Clarke and Momeni (2021) develop tests for asset pricing models using

individual assets rather than sorted portfolios, but conclude that the IPCA model which

uses information on characteristics across assets fares better. Clarke and Linn (2023) use

pairwise return covariances and relate them to a large number of asset characteristics, with

an assumption that if a characteristic can predict future returns, it can also help explain the

covariances. These studies supposedly complement the dimension reduction methods such as

IPCA, RRR, etc. The emerging interest in evaluating a large number of asset characteristics

for their predictive power for future returns, thus involve both theoretical reasoning, such

as Daniel et al. (2020) and Kozak and Nagel (2023), and empirical reasoning, followed in

this paper. On the methodology side, Zhang (2023) has extended the IPCA to include time-

varying alphas to capture the pricing errors that can come from outside the space spanned

by the asset characteristics. These alphas are taken to be orthogonal to factor loadings of

the asset characteristics and do not have exposure to the resulting common factors. This

extension is shown to result in the null pricing error hypothesis being rejected for several,

commonly used, characteristics-based models.

There are multiple contributions to the literature from this work. By casting the di-

mension reduction (from characteristics to factor) models in the regression framework, we

provide a richer modeling framework through a pooled Reduced-Rank Regression as well

as an asymptotic theory for the estimators. In this framework, we can accommodate the

cross-sectional covariances as dictated by theory as well by empiric but also chronologi-

cal dependencies. The dimension-reduction feature is further augmented by the sparseness
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methods that lead to variable selection for elegant interpretations. We empirically demon-

strate how the methodology has good predictive power. The in-sample and out-of-sample

performance of the estimators convey that the RRR estimators are stable and the inference

is robust.

The rest of the paper is structured as follows. Section 2 formally introduces the model.

In Section 3, details of the estimation of the model parameters, highlighting their properties

and their interpretation are provided. In Section 4, we present the asymptotic results, point

out the bias in the IPCA inference and offer some mispricing tests. In Section 5, a sparse

version of our model is introduced. Section 6 describes the empirical design, including the

data, the performance metrics that are used to evaluate the models, the specification of the

residual covariance matrix of stock returns, and the validation assumption for the sparseness

setup. Section 7 presents the empirical results of the study, starting with the in-sample

analysis and then moving on to the out-of-sample analysis. Finally, simulation results are

presented for the best selected model from the study. Section 8 concludes. Some technical

details can be found in the Appendix.

2 Reduced Rank Regression Model Formulation

One of the main goals of empirical assert pricing research is to understand the risk-

return relationship by looking at the first two moments of the stock return distribution.

The classical theory assumes that the law of one price holds and the market is frictionless.2

In this context, it can be shown that there exists a stochastic discount factor, linear in a

(small) number of factors that perfectly price the cross-section of returns. Moreover, if the

covariance between such factors and the returns is proportional to the stock risk premia,

then risk premia can be consistently modeled as a linear function of the factors. Because the

theory does not provide any guidance on the nature of such factors, a widely used approach is

2This means, among other things, investors are treated as price takers and the effect of transaction costs
is considered to be of second order.
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to retrieve them indirectly through dominant principal components of the covariance matrix

of returns. This cross-sectional analysis results in unconditional factor model with static

factor loadings.

However, to capture the time-varying nature of the investment opportunity set, a con-

ditional factor model is more suitable. In order to estimate the resulting factor model, two

approaches are taken in the literature; either the factors are to be assumed known or factor

loadings are taken to be time-varying that can be related to asset specific characteristics. In

the absence of economic theory, specifying correctly the exact (latent) factors is an arduous

task. Therefore, several asset characteristics(instruments) are considered that can possi-

bly represent these factors. In this section, we formulate these models in the multivariate

regression framework that unifies various applications found in the literature.

The basic data consists of (ri,t+1, Z
′
i,t), where ri,t+1 is the excess return of the ith asset

(i = 1, ..., N) at time t (t = 1, ..., T ) with Zi,t being the L × 1 vector of associated asset

characteristics. Let Zt be the N × L matrix of characteristics associated with ’N’ assets.

The first two moments of the returns, conditioned on the characteristics, are given as:

µr(t) ≡ E[rt+1|Zt] , Σrr(t) ≡ var(rt+1|Zt) (1)

where Σrr(t) the conditional covariance matrix is assumed to be a positive definite matrix.

If the law of one price holds (and market frictions are of second order), then a Stochastic

Discount Factor (SDF), mt+1, exists and is unique in the span of the excess returns rt+1

such that Et[mt+1rt+1|Zt] = 0, and is linear in a K ≤ L dimensional factors ft+1. Therefore,

under the assumption that stock risk premia are proportional to the covariances between the

stock returns and the factors, the following model representation for the excess returns rt+1

is equivalent to the existence of such SDF (see Section 6.3 in Cochrane (2005)),

rt+1 = αt + Atft+1 + εt+1 , εt+1 ∼ N(0,Σεε(t)). (2)
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Here αt is a N × 1 vector capturing the portion of excess returns that are not coming from

the exposure to the factors and At is a N × K conditional factor loading matrix. When

αt = α,At = A and Σεε(t) = Σεε = Σ, model (2) reduces to

rt+1 = α + Aft+1 + εt+1 , εt+1 ∼ N(0,Σ), (3)

the APT-implied data generating process for the excess returns in the unconditional setup.

This is equivalent to a SDF with time-invariant intercept and a L-dimensional vector of

slopes. Observe that in (2) and (3), only rt+1 is observable. The factors ft+1 in model (3) are

estimated as the principal components of the covariance matrix of the returns. Alternatively

if the factors are taken to be related to exogenous macro characteristics, we show how it

naturally leads to a reduced rank multivariate regression model.

Suppose the factors ft+1 are assumed to be approximately linear in Zt via

ft+1 = B · Zt + at+1, (4)

then model (3) along with (4) becomes

rt+1 = α + AB · Zt + ε∗t+1 = α + C · Zt + ε∗t+1. (5)

The identifying restriction in model (5) is represented by the rank of the regression coefficient

matrix C, that is rank(C) = K < L. In practice, the value of K can be specified based on an

apriori theory or it can be determined empirically based on the canonical correlations between

rt and Zt. This rank condition has two practical implications with elegant interpretations:

C
N×L

= A
N×K

B
K×L

; l′iC = 0, i = 1, 2, ..., (L−K). (6)

Observe that the term BZt = ft+1 can be interpreted as the vector of known factors recover-

ing most of the useful information from Zt, and the linear combinations, l′rt+1 = l′α+ l′ε∗t+1,
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are independent of the Zt characteristics, thus indicating that certain stock returns can be

modeled without any reference to asset characteristics. The rows of A can be interpreted

as the influence of factors ft+1 on each asset. As mentioned, if we let R
N×T

= [r2, ..., rT+1]

and Z
L×T

= [Z1, ..., ZT ] as data matrices, the rank of the C matrix can be simply tested

by the significant canonical correlations between rt+1 and Zt, or equivalently, through the

singular values of W
1
2
1 ·C ·W

1
2
2 , where W1 and W2 are appropriately chosen weight matrices.

These choices are usually based on the asymptotic distribution of the LS estimator of the

C coefficient matrix. For model (5), the choices are, W1 = Σ−1, the inverse of the covari-

ance matrix of the excess returns R (or the errors) and W2 = ΣZZ , the covariance matrix

of the stock-characteristics Zt. Details on the estimation and inference of model (5) with

constraint (6) can be found in (Reinsel et al., 2022, Chapter 2). Note that if Zt = rt, model

(5) is a vector autoregressive model (VAR(1)) with additional constraint on the stationarity

of rt. It is well-known that there is a close relationship between the non-stationarity of the

process and the canonical correlations between rt+1 and rt, and hence the singular values of

W
1
2
1 · C ·W

1
2
2 .

The RRR model in (5) has found some applications in finance. For an elegant application

of model (5) in the bond market, where rank(C) = 1 arises naturally, see Cochrane and

Piazzesi (2005). Another example, the ”sieve reduced rank regression” model of Adrian et al.

(2019) is a non-linear version of (5) with Zt representing the VIX, the implied volatility index

at time t. There are other recent models extending principal component in the literature

that can be formulated in the reduced-rank regression framework. A prominent example is

given by the projected PCA (PPCA) model of Fan et al. (2016b). The model assumes the L

characteristics to be time-invariant but stock specific, that is Zi,t = Zi, i = 1, ..., N stacked

in Z = [Z1, ..., ZN ]
′. The factors are related to g(Z), not necessarily linear. This amounts to

re-write model (4) as,

ft+1 = g(Z) + a∗t+1. (7)
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Thus model (3) can now be written in matrix form as

R
N×T

= A
N×K

(G(Z) + Γ)′

K×T

+ U
N×T

(8)

where Γ is a T×K matrix that contains the factors that cannot be explained by the variables

Z and U represents the idiosyncratic errors. Approximating G(Z) ≈ Φ(Z)B′ where Φ(Z) is

a matrix of basis functions, observe that

R = A ·B · Φ′(Z) + U (9)

which is in the RRR form of model (5). If P = Φ(Z)(Φ′(Z)Φ(Z))−1Φ′(Z) is the projection

matrix, then

R · P = A ·B · Φ′(Z) + E. (10)

The projected data, R · P is used to estimate A and B; the resulting estimates are called

projected principal components. Observe that the projected data R · P is smoother than

R, resulting in estimators having certain nice properties. The PPCA model of Fan et al.

(2016b) can be taken essentially as a non-parametric version of a RRR model when stock

characteristics are time-invariant. This model is used for forming arbitrage portfolios, using

the static asset characteristics, by Kim et al. (2021).

2.1 RRR Model for Conditional Risk and Return

The basic factor model stated in equation (2) is quite general. All quantities that are

related to returns vary over time. The reduced-rank model in equation (5), results from

relating time-varying factors to asset characteristics. An alternate formulation is to relate

the factor loadings to asset characteristics, thus providing a rich linkage between asset-

specific loadings and the characteristics. This is the essence of the IPCA model of Kelly
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et al. (2019). The parameters of model (2) are specifically structured as:

αt = ZtΓα + vαt , At = ZtΓβ + vAt . (11)

This is different from the traditional factor models where the factors are assumed to be

unknown as in (3) or known to be related to time-varying characteristics as in (4). The

cross-sectional regression model then can be written as,

rt+1
N×1

= Zt
N×L

· βt+1
L×1

+ ϵt+1
N×1

, ϵt+1 ∼ N(0,Σt) (12)

with

βt+1
L×1

= Γα
L×1

+ Γβ
L×K

· ft+1
K×1

(13)

and K < L. In the IPCA model of Kelly et al. (2019) it is assumed that Σt = σ2IN , ignoring

the return covariances.

In the absence of restriction (13) model (12) defines a system of panel regressions which

can be run independently. Thus the L-dimensional GLS estimator, for a known Σt, is

β̃GLS
t+1 = (Z ′

tΓtZt)
−1Z ′

tΓtrt+1 ∼ N
(
βt+1, (Z

′
tΓtZt)

−1
)

(14)

where Γt = Σ−1
t . Equation (14) defines the distribution of the unconstrained GLS factors.

Restriction (13) defines βt+1 as a linear function of the K-dimensional vector of RRR factors

ft+1. When Γα = 0, observe that equation (13) can be treated as a static factor model

of the regression coefficients βt+1 with Γβ representing the matrix of loadings mapping the

GLS factors into the RRR factors. If Γα ̸= 0, equation (13) can be considered as a static

factor model of the mean adjusted time-varying regression coefficients, (βt+1 − β̄), where

β̄ = 1
T

∑
t βt+1. Indeed as we show later, we can think of Γα as a close approximation of

β̄, proxying for mispricing. In Section 3, we show how Γ̂α + Γ̂β f̂t+1 represents the closest

K-dimensional approximation of the L-dimensional vector βt+1. Specifically, ft+1 captures
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Electronic copy available at: https://ssrn.com/abstract=4083935



the K most important innovations in βt+1. Moreover, such innovations themselves represent

mean-variance efficient factors for a given K when Γα = 0 and βt+1 = β̃GLS
t+1 .

The RRR nature of model (12), and thus of the IPCA model, becomes apparent once we

reformulate the restriction (13) as a rank condition on the coefficients matrix stacked as,

β
T×L

≡


β′
2

...

β′
T+1

 ≡ 1TΓ
′
α +


f ′
2

...

f ′
T+1

 · Γ′
β ≡ 1T

T×1
· Γ′

α
1×L

+ F ′
T×K

· Γ′
β

K×L

(15)

with the following rank constraint

rank(β − 1TΓ
′
α) ≡ rank(βα) = K < L. (16)

The RRR model version of IPCA is not in the standard form of the classical RRR setup as

defined in equation (5), because the time-varying predictors are related to loadings rather

than factors. Although the slope vectors, βt+1 vary, their similarity empirically observed

over time would suggest that a lower rank for the β matrix is possible. This is an empirical

observation, not based on any apriori theory. As we show later, we can estimate an approx-

imate value for K through a rank test based on the matrix formed by stacking as rows the

GLS estimates β̃GLS
t+1 for t = 2, ..., T + 1. As discussed in Fan et al. (2021), knowing the true

value for K would guarantee the consistency of the factor estimators.

We want to also comment on the usefulness of the RRR model formulation. The con-

ditional RRR factor model presented in this section can also accommodate time-series de-

pendence in the error terms as follows: If we denote the error term in (12) as, ut+1, we can

specify a model for the errors as,

ut+1 = Φtut + ϵt+1 , ϵt+1 ∼ N(0,Γ−1
t ). (17)
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Then model (12) along with (14) can be rewritten as

r∗t+1 ≡ rt+1 − Φtrt = Ztβt+1 − ΦtZt−1βt + ϵt+1. (18)

The estimator of this model along with the constraints (13) can be computed with the RRR

methodology.

2.2 Why the covariance structure is important?

We want to emphasize the need to account for the covariance structure in the modeling

of conditional returns. This represents the main difference between the RRR model studied

here and the IPCA model. As observed in Hasbrouck and Seppi (2001) stock returns do

exhibit strong commonalities measured in terms of the principal components of the covariance

matrix. Ignoring this information can lead to a loss in statistical and economic efficiency of

the portfolio-based estimators. From a statistical point of view, exploiting a more general

positive definite covariance structure if it is present should result in estimators that are

more efficient, which we show explicitly later. From the economic perspective, as pointed

out in Daniel et al. (2020) and Kozak and Nagel (2023), neglecting stock covariances in the

construction of factors can lead to the loss of mean-variance efficiency.

It is instructive to relate our model to the models studied in Daniel et al. (2020) and

in Kozak and Nagel (2023). These authors advocate incorporating the covariances from

economic perspective. The conditional version of the model in Daniel et al. (2020) can be

stated as

rt+1 = Atft+1 +Btgt+1 + ut+1 = Ztβt+1 + εt+1 (19)

where gt+1 represents the unpriced factors, independent of the priced factors ft+1, with

E[gt+1] = 0 and V ar[gt+1] = V , a positive definite matrix. It is assumed that ut+1 ∼

N(0, σ2IN); with that Σt = BtV B′
t + σ2IN , with non-null covariances. It is well-known

(see Rao (1967)) that the OLS estimate of ft+1 in (19) is efficient if A′
tBt = 0, which
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implies that all the priced factors are captured through the covariates At. If At represents

certain covariates that may contain unpriced factors, then the estimated factors f̂t+1 will

not generate a mean-variance efficient tangency portfolio. To that end, Daniel et al. (2020)

propose a hedging method for removing the unpriced risk, which results in higher Sharpe

ratios. With no theoretical guidance on characteristic that represent the priced factors only,

it is safer to consider all the covariates in the construction of factors that guarantee the

mean-variance efficiency. This is equivalent to constructing GLS factors rather than OLS

factors. This is the approach taken by Kozak and Nagel (2023), which we describe below.

Observe that the implied variance of rt+1 in model (19) can be written as

Σt = ZtΦtZ
′
t + UtΩtU

′
t (20)

where ZtΦtZ
′
t captures the systematic component coming from Atft+1 = Ztft+1 under the

additional assumption that f ′
t+1 are random with covariance matrix Φt, and UtΩtU

′
t the

idiosyncratic component coming from Btgt+1 + ut+1, that is, BtΣgtBt + σ2IN . Kozak and

Nagel (2023) also state, as observed earlier, that in the special case of A′
tUt = 0 the OLS

factors from model (19) are mean-variance efficient. The equivalence of OLS and GLS

estimators of ft+1 in model (19) has been studied by Rao (1967). To prove the equivalence,

we need to determine the structure of Σt, that satisfies (leaving the subscript ’t’ out)

(A′Σ−1A)−1A′Σ−1
rr = (A′A)−1A′ (21)

Lemma 5a in Rao (1967) states that if B is of rank r = (N − rank(Z)) such that B′A = 0,

then the set of Σrr matrices are of the form,

Σrr = AΦA′ +BV B′ + σ2IN (22)

as stated in Kozak and Nagel (2023).

Kozak and Nagel (2023) point out that such factors constructed taking into account
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the covariances are (conditionally) mean-variance efficient as long as stock risk premia are

linear functions of stock characteristics Zt. Under the structure of model (12), without the

structure implied in (13), Lemma 1 in Kozak and Nagel (2023) is satisfied by simply defining

the L-dimensional price of risk vector as bt = (Z ′
tΓtZt)βt+1. Thus, as long as the covariance

of stock returns rt+1 and the factors βt+1 is proportional to the stock risk premia, the usual

minimal requirement for any factor model to hold, the tangency portfolio formed by the

factors β̃GLS
t+1 achieves the maximal squared Sharpe ratio µ′

tΣ
−1
t µt spanned by the SDF mt+1

in the span of rt+1. If we further assume, as in the IPCA setup, that Γt = (1/σ2)IN equation

(14) defines the mean-variance inefficient distribution of the OLS factors, also know as the

BARRA factors (after Bar Rosenberg, founder of Barra Inc. that first used them) and

recently used in Fama and French (2020).

In our application we follow these insights and estimate Σt using industry clustering as

Daniel et al. (2020) argue that industry exposure is a source of unpriced risk. Our results

show how directly modeling the impact of unpriced factors through the residual covariance

matrix is more effective than indirectly adjusting OLS factors via the hedged portfolios

designed by Daniel et al. (2020) and refined by Kozak and Nagel (2023).

3 Estimation

For the ease of exposition, let us assume that the error term, ϵt+1 has a time-invariant co-

variance matrix (Σt = Σ = Γ−1). Now let r
NT×1

= [r2, · · · , rT+1]
′ and Z̄

NT×TL
= Diag(Z1, · · · , ZT )

be the data matrices. Stacking the regression related parameters with the constraint (13) in

the vector form, denote βvec(θ)
TL×1

= (1T ⊗ IL)Γα + (F ′ ⊗ IT )vec(Γβ)
′, and the errors stacked as

e
NT×1

= [ε2, · · · , εT+1]
′. Then the RRR model in (12) can be more compactly written as

r = Z̄ · βvec(θ) + e, (23)
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and the cross-sectional contemporaneous correlation assumption can be expressed as

cov(e) = IT ⊗ Σ. (24)

Then RRR parameters can be arranged in the following, s = L + K(T + L) dimensional

vector as, θ′ = [Γ′
α, vec(F )′, vec(Γ′

β)
′] and can be found by minimizing the GLS criterion

S(θ) =
1

2T
· (r − Z̄ · βvec(θ))

′ · (IT ⊗ Γ) · (r − Z̄ · βvec(θ))

∝ 1

2T

T+1∑
t=2

(β̃GLS
t+1 − Γα − Γβft+1)

′ · (Z ′
tΓtZt) · (β̃GLS

t+1 − Γα − Γβft+1).
(25)

where β̃GLS
t+1 is as given in (14). Observe that in the estimation of model parameters, Γβ, ft+1

cannot be uniquely determined as (ΓβV )(V −1ft+1) for any non-singular L-dimensional V

matrix holds, but the product Γβft+1 is uniquely determined. There are several methods to

identify uniquely the parameters, Γα, Γβ and F = [f2, ..., ft+1], we follow Kelly et al. (2019),

and impose the following constraints:

Γ′
αΓβ = 0, Γ′

βΓβ = IK , FF ′ = diag(λ1, ..., λK) > 0. (26)

These constraints restrict the information content coming from the vector Γα to be orthogonal

to the information coming from the factors. The norm of the loading matrix Γβ is set to

be unity for better interpretation, and the time series of extracted factors are taken to be

independent of each other and independent over time.

The values of θ that minimize the GLS criterion satisfy the following first-order condi-
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tions3, for all t,

f̂t+1 = [Γ̂β
′(Z ′

tΓtZt)Γ̂β]
−1Γ̂β

′(Z ′
tΓtZt) · (β̃GLS

t+1 − Γ̂α)

vec(Γ̂′
β) =

[
T∑
t=1

(Z ′
tΓtZt ⊗ f̂t+1f̂

′
t+1)

]−1

·

[
T∑
t=1

Ä
Z ′

tΓtZt ⊗ f̂t+1

ä
(β̃GLS

t+1 − Γ̂α)

]

Γ̂α =

[
T∑
t=1

(Z ′
tΓtZt)

]−1

·

[
T∑
t=1

(Z ′
tΓtZt)(β̃

GLS
t+1 − Γ̂β f̂t+1)

]
.

(27)

These estimates are then normalized to satisfy the identification constraints stated in (26).

This is achieved by re-scaling Γ̂β and F̂ via terms extracted from a Cholesky decomposition

on Γ̂′
βΓ̂β and a singular value decomposition on F̂ F̂ ′, and re-defining the L vector of intercepts

as the residuals from regressing Γ̂α on the adjusted version of Γ̂β.
4 Because the estimates in

(27) are functions of each other, the partial least squares (PLS) method is used to iteratively

arrive at a solution. For the PLS method to converge, it is essential to have good starting

values for the estimates. Because of the form of structure imposed on βt+1 = Γα + Γβft+1

we suggest selecting the following initial values; Let β̄GLS = 1
T

∑
t β̃

GLS
t+1 ; decompose β̃GLS

t+1 =

β̄GLS +(β̃GLS
t+1 − β̄GLS) = β̄GLS + γ̂t+1. Start with Γ̂α = β̄GLS; observe that γ̂t+1 = Γ̂β f̂t+1 and

thus the matrix stacking up the estimates γ̂t+1, β̂α
L×T

= [γ̂2, ..., γ̂T+1]
′, is of reduced-rank K.

If V̂
L×K

= [V̂1, ..., V̂K ] are the eigenvectors corresponding to the first K eigenvalues of β̂′
αβ̂α

(or the singular values of β̂′
α), set Γ̂β = V̂ and F̂ = V̂ ′β̂′

α . This procedure works reasonably

well in practice.

To show for any t, that β̃GLS
t+1 is more efficient than its OLS analog, we follow the standard

approach given in the literature. Observe that β̃GLS
vec = (Z̄ ′(IT ⊗ Γ)Z̄)−1Z̄ ′(IT ⊗ Γ)r ∼

N(βvec, (Z̄
′(IT ⊗ Γ)Z̄)−1) and β̃OLS

vec = (Z̄ ′Z̄)−1Z̄ ′r ∼ N(βvec, (Z̄
′Z̄)−1Z̄ ′(IT ⊗ Γ)Z̄(Z̄ ′Z̄)−1).

Define X =
(
Z̄ ′Z̄

)−1
Z̄ ′ −

[
Z̄ ′(IT ⊗ Γ)Z̄

]−1
Z̄ ′(IT ⊗ Γ). Note XZ̄ = 0 and X(IT ⊗ Γ−1)X ′ =

(Z̄ ′Z̄)−1Z̄ ′(IT ⊗ Γ)Z̄(Z̄ ′Z̄)−1 −
[
Z̄ ′(IT ⊗ Γ)Z̄

]−1 ≡ V ar(β̃OLS
vec )− V ar(β̃GLS

vec ). Because (IT ⊗
3By setting Γt =

1
σ2 INt+1

, these are exactly the conditions for OLS as stated in Kelly et al. (2019)(section
2); we additionally provide an explicit formula for Γα.

4The sign of the columns of Γβ and F are altered so that the means of the rows of F , representing the
average excess factor returns, are non-negative.
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Γ−1) is positive definite, X(IT ⊗ Γ−1)X ′ > 0. Thus V ar(β̃OLS
vec ) > V ar(β̃GLS

vec ). Note that

both β̃GLS
vec and β̃OLS

vec are unbiased with the same expected value βvec, we can then see how

the smaller covariance for β̃GLS
vec leads to a higher Sharpe ratio.

By the same logic, in the context of model (12) and (13) when Γα and Γβ are known, we

can regress r∗∗t+1 ≡ rt+1−ZtΓα on ZtΓβ and conclude that V ar(f̂t+1|Γα,Γβ) =
[
Γ′
β(Z

′
tΓtZt)Γβ

]−1

is lower than V ar(f̂ IPCA
t+1 |Γα,Γβ) = σ2

[
Γ′
βZ

′
tZtΓβ

]−1
. Therefore, the RRR factors are statis-

tically and economically more efficient than IPCA factors in theory. Our findings builds on

those of Kozak and Nagel (2023) as we demonstrated that the GLS and RRR factors, β̃GLS
vec

and f̂t+1 respectively, not only achieve a higher mean-variance spanning but are also more

efficient estimators.

3.1 Economic interpretation of the estimates

Observe that the RRR restriction βt+1 = Γα + Γβft+1 decomposes the L-dimensional

coefficients from the regression model (12) into two parts, the time-invariant latent factor

Γα and the dynamic component Γβft+1. Indeed the GLS criterion (25) defines Γ̂β f̂t+1 as

the closest K-dimensional approximation to the L-dimensional adjusted GLS coefficients,

β̃GLS
t+1 − Γ̂α. The discussion below, we believe can help better interpret the components when

estimated from empirical data.

Intercept Γ̂α : Observe that (Z ′
tΓtZt)(β̃

GLS
t+1 − Γ̂β f̂t+1) = Z ′

tΓt

Ä
rt+1 − ZtΓ̂β f̂t+1

ä
; hence

from the first order conditions (27) we see how Γ̂α is a weighted average of residuals from

model (12) without the term Γα. A matrix algebra result from Fujikoshi (1974) explicitly

relates the unconstrained matrix of GLS factors β̃GLS = [β̃GLS
2 , ..., β̃GLS

T+1 ]
′ to the constrained

matrix β defined in equation (15) as

β̂ =
1T1

′
T

T
β̃GLS +

Å
IT − 1T1

′
T

T

ã
β̃GLSVKV

′
K (28)

where VK consists of K eigenvectors that correspond to the K largest eigenvalues of D =
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(β̃GLS − β̂)(β̃GLS − β̂)′. 5 Inspecting the structure of β̂ from (28) allows to identify
1′T β̃GLS

T

as a proxy for Γ′
α. That is, Γα can be thought of as the temporal average of the GLS factors,

which was defined as β̄GLS in the previous section. Thus equation (28) formally justifies

the suggestion to assign β̄GLS as the initial value for the iterative procedure, and provides a

simple interpretation for Γα.

Factors f̂t+1 : From the first order conditions (27) we also see that the estimated RRR

factors f̂t+1 are weighted exposures of the GLS factors, β̃GLS
t+1 in excess of their approximate

mean Γ̂α. As a matter of fact, we can interpret f̂t+1 as capturing the K most important

innovations in the L-dimensional GLS coefficients vector β̃GLS
t+1 . More importantly, under the

usual assumption that stock risk prima are proportional to the covariance between the stock

excess returns rt+1 and theK-dimensional factors ft+1, the Sharpe ratio of the mean-variance

portfolio that uses f̂t+1 when Γα = 0 equals the maximum squared conditional Sharpe ratio

µ′
tΣ

−1
t µt.

6 Therefore, when Γα = 0 the RRR factors are conditionally mean-variance efficient.

Moreover, it follows that when Γα ̸= 0 the RRR factors are not efficient so that a nonzero

estimated mean Γ̂α for the GLS factors signals mispricing. Also notice that when K = L the

first order conditions in (27) show that the RRR factors f̂t+1 are proportional to the GLS

factors and at the same time Γα must be zero. This implies that also for K = L the RRR

factors are mean-variance efficient (achieving the exact same spanning as the GLS factors)

and there is no mispricing.7 Therefore our setup nicely relates the mean-variance efficiency

of the K ≤ L dimensional vector of extracted RRR factors to the absence of mispricing.

5For the proof, see Fujikoshi (1974) (Lemma 1 and Lemma 2) with L×L positive matrix Q set to identity.
6This can be easily seen by defining Wt = ΓtZtΓβ(Γ

′
βZ

′
tΓtZtΓβ)

−1 and Σ−1
t = Γt in Lemma 1 of Kozak

and Nagel (2023) and defining the K-dimensional price of risk vector as bt = (Γ′
βZ

′
tΓtZtΓβ)βt+1.

7To see why Γα = 0 when K = L, we notice that the only viable singular value decomposition of β is of
the form UDV ′ where U and V are full-rank orthogonal matrices and D is a rectangular diagonal matrix.
Then defining F = DV ′ and Γβ = U , we can observe that (β − ΓβF ) = 0. Such decomposition leads to
βGLS
t+1 = Γβft+1 for all t, where ft+1 is the t-th column of the F matrix. To see why the RRR factors ft+1

and the GLS factors β̃GLS
t+1 share the same mean-variance spanning when K = L, define wt and qt to be the

L-dimensional row weight vectors that yield the highest Sharpe ratio for β̃GLS
t+1 and ft+1 respectively. Since

β̃GLS
t+1 = Γβft+1 it follows that SR(wtβ̃

GLS
t+1 ) = SR(wtΓβft+1). Because qt yields the highest Sharpe ratio

for ft+1 then SR(wtΓβft+1) ≤ SR(qtft+1) and therefore SR(wtβ̃
GLS
t+1 ) ≤ SR(qtft+1). On the other hand,

since Γ′
βΓβ = I then Γ′

β β̃
GLS
t+1 = ft+1. It then follows that SR(wtβ̃

GLS
t+1 ) ≥ SR(qtΓ

′
β β̃

GLS
t+1 ) = SR(qtft+1). So

SR(wtβ̃
GLS
t+1 ) = SR(qtft+1).
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Binding Constraint: Γ̂β : The matrix Γ̂β serves to map a large number of L stock

characteristics to a small number of K risk factors. Constraint (13) suggests that Γβ can

also be interpreted as the loading matrix of a static factor model of the factors: a model that

relates the data generating process for the L-dimensional vector of GLS factors β̃t+1 to that

of the K-dimensional vector of RRR factors ft+1. The estimation of Γ̂β involves identifying

the time-invariant structure of a few linear combinations of candidate characteristics that

are most effective at describing the latent factor loading structure in ft+1.

4 Asymptotic Distributions of Estimators

In the financial panel data in general and in the data that we analyze, N > T . We use

the asymptotic results presented in Silvey (1959) and Reinsel et al. (2022). With the same

available data, (rit, Z
′
it) as here, Reinsel et al. (2022) in chapter 7 provide the asymptotics for a

time-series version of the RRRmodel where the cross-sectional regression (12) is implemented

for a given unit i over time (instead of for all units at a given point in time t). With some

regularly conditions added, the results given there can be adapted here as well. We assume

that N is fixed but T → ∞. The results follow from the distribution of δS(θ)
δθ

, the vector of

first partial derivatives (27) of the criterion function defined in equation (25), which can be

more compactly written as

δS(θ)

δθ
= − 1

T
·M ′Z̄ ′(IT ⊗ Γ)e (29)

where M = [(1T ⊗ IL), (IT ⊗ Γβ), (F
′ ⊗ IL)]. Thus the asymptotic distribution depends on

the distribution of 1√
T
Z̄ ′(IT ⊗ Γ)e which is normal with mean zero and variance-covariance

matrix V ∗ = Z̄ ′(IT ⊗ Γ)Z̄.

Result 1: Given Γ = Σ−1, as T → ∞, θ̂ → θ almost surely and
√
T (θ̂−θ) has a limiting

multivariate normal distribution with a mean zero vector and a singular covariance matrix
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W ∗ defined as

W ∗ = (Bθ +HθH
′
θ)

−1Bθ(Bθ +HθH
′
θ)

−1 (30)

where Bθ = lim
T→∞

δ2ST (θ)
δθδθ′

= M ′V ∗M , h(θ) is a K (K+1) column vector of the normalization

conditions in (26) stacked without duplication and Hθ = {∂hj(θ)/∂θi} is a matrix containing

the partial derivatives of h(θ) = 0.

More details on the matrices Bθ and Hθ are given in the Appendix B. The singularity

of Bθ arises mainly due to imposing the identification constraints (26) and it is removed by

adding the HθH
′
θ matrix. Yet observe that W ∗ is a singular matrix. The asymptotic theory

in Result 1 applies to the IPCA model as well.8 Kelly et al. (2019) base their inference

using bootstrapping samples. Our closed-form limiting distribution allows us to provide

diagnostics for the inferences.

4.1 Testing for Γα

Kelly et al. (2019) consider a large sample test for the no mispricing hypothesis, H0 :

Γα = 0. Recall testing this hypothesis is equivalent to assessing whether the instruments

Zt capture the variation in average returns that may be not correlated to factor exposures.

Specifically, it is a test to infer whether the lower dimensional approximation of the mean

of the GLS factors βt+1 is exactly zero. This condition is economically important as it rules

out mispricing coming from the stock characteristics Zt and is equivalent to categorizing all

the variation present in stock characteristics as risk exposure. Kelly et al. (2019) construct

a test for H0 using the following Wald-type test statistics, Wα = Γ̂′
αΓ̂α and implement the

test via bootstrapping samples. The bootstrapping samples are not drawn from the basic

models (12) and (13) but based on the derived model

Xt+1 = Z ′
trt+1 = (Z ′

tZt)Γα + (Z ′
tZt)Γβft+1 + Z ′

tϵt+1. (31)

8Set Γ = 1
σ2 IN and an estimate of σ2 can be obtained by pooling the residuals.
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Observe that Xt+1 is the return from a characteristic-based portfolio and the resampling

is based on the model for Xt+1 under H0 and not under the original model for rt+1. Note

that in practice the number of stocks available in a given time period t is time-varying (as

some firms get delisted, others get listed and/or merged etc) resulting in an unbalanced

panel. The portfolio formulation in (31) avoids dealing with this complication; however it

induces a time varying residual covariance matrix function of the stock characteristics Zt

which differs from the structure implied by the IPCA model for the stock returns’ residuals.

That is, V ar(Z ′
tεt+1) = σ2Z ′

tZt may not be an identity matrix with a scalar multiplier. The

bootstrap sampling of Z ′
tεt+1 from a t-distribution as in Kelly et al. (2019) accounts for

fat tails but not for this type of induced heteroscedasticity (Z ′
tZt). This bias has serious

implications as illustrated in the top graph of Figure 1.

The figure compares the bootstrapped distribution of the test statistic proposed in Kelly

et al. (2019) (blue line) for the null of Γα = 0 in an IPCA model with K = 6 versus the

distribution for the same statistic implied by the asymptotic theory (black line) before (top

graph) and after (middle graph) the correction for the bias.9 The vertical red line reports the

critical value for the test.10 Notice that according to the test proposed in Kelly et al. (2019)

we would not reject the null (with a p-value of 0.505), however, based on the asymptotic

distribution from Result 1, it is rejected at virtually any level of confidence. Moreover, as we

later show in the empirical section,11 the difference in the annualized maximal Sharpe ratios

due to the presence of a non-zero Γα for the IPCA model with K = 6 is approximately 1

and it is statistically significant at any conventional level. In contrast, the bottom graph of

Figure 1 plots the same quantities as the top graph but under our bootstrap design where

we simulate the error term Z ′
tεt+1 from a normal distribution with mean zero and covariance

σ2Z ′
tZt. Thus the bootstrapping results depend upon the valid assumption made on the

9We choose to show the case where K = 6 as this is the first instance in Kelly et al. (2019) where they
cannot reject the null of Γα = 0 at any conventional level.

10More details available in Section 4.2.
11See the bottom graph of Figure 5, the star on the differential maximal Sharpe ratio estimate for the

IPCA model with K = 6 represents statistical significance at least at the 5% level using the tests developed
in Barillas et al. (2020).
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error term that depends the time-varying stock characteristics Zt.

4.2 Formal test for mispricing

We can exploit the asymptotic distribution in Result 1 to derive the distribution for

Wα, the statistic proposed in Kelly et al. (2022), and use it for testing H0 : Γα = 0. In

particular, observe Γ̂α ∼ N(Γα,W
∗
α) where W ∗

α represents the first L rows and L columns

of W ∗, obtained by partitioning the matrix of W ∗ defined in equation (30). From Theorem

2.1 and 3.1 in Box (1954) it follows that under the null Γα = 0, the test statistic Ŵα can

be written as a mixture of Chi-squared distributions, which can be well-approximated by a

scaled central Chi-squared distribution. Thus

Ŵα ≡ Γ̂′
αΓ̂α ∼

L∑
l=1

λlχ
2(1) ≈ gχ2(h) (32)

where λl is the l-th eigenvalue of W ∗
α, g = K2

2K1
, h =

2K2
1

K2
and K1 =

∑L
l=1 λl, K2 = 2

∑L
l=1 λ

2
l

and hence Ŵα

g
≈ χ2(h). Thus this procedure makes use of the overall empirical estimates

more directly.

Alternatively we can use Result 1 to directly obtain the Wald statistic and its distribution:

WS = Γ̂′
α (W

∗
α)

−1 Γ̂α ∼ χ2
L (33)

This statistic is similar to the large sample test employed in Gibbons et al. (1989) to test for

the joint significance of the time-invariant regression intercepts in a multivariate regression

setup. In Figure 2, we compare the power function of the two tests. It is clear that the

Wald statistic in (33) has better power, but the suggested approximation to Wα also fares

well. The improvement resulting from the approximation can be seen from the bottom graph

of Figure 1, of the distributions for the previously discussed test for an IPCA model with

K = 6 (after we correctly account for the bias present in the IPCA bootstrapping setup).

To sum up, even if the inference based on the bootstrapped distribution for Wα with the
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suggested modification appears to be fairly accurate, it remains much more computationally

intensive than that based on the asymptotic distribution given in the Wald Test; the test

still exhibits less power, and it may underestimate the significance of Γα.
12 Thus we suggest

using the asymptotic Wald test (33). An alternative informal procedure to test H0 : Γα = 0

in model (12) can be suggested. The difference between the model with and without Γα

is in how the second term, Γβft+1, is extracted. Recall our earlier discussion that when

Γα is present, it can be estimated by Γ̂α = β̄GLS, where β̄GLS is the temporal average of

the regression coefficients β̃GLS
t+1 . Therefore, we could simply compare the singular values

of β̃GLS = [β̃GLS
2 , ..., β̃GLS

T+1 ]
′ with the singular values of β̃GLS

α = [(β̃GLS
2 − β̄GLS), ..., (β̃GLS

T+1 −

β̄GLS)]′. If H0 : Γα = 0 holds, we should expect the two sets of singular values to be the

same.

Two other tests that are central to the IPCA or RRR model involve testing for observable

factors beyond the instruments and testing for the significance of the instruments themselves.

The former can be tested via the RRRmodel setup in (12) and (13); adding or deleting certain

factors involves merely adjusting the returns and the instruments for the partial effect of

those factors. Such an extended model in the classic RRR setup is covered in (Reinsel et al.,

2022, Ch3). For testing the significance of the instruments, Kelly et al. (2019) follow the

cumbersome procedure that compares the models with and without a particular instrument

again using the computationally intensive bootstrap procedure. With the asymptotic results

given in this paper, it is easy to carry out this test for partial impact of an instrument or a

select set of instruments. We explore the sparseness of the Γβ matrix more directly in the

12An additional comparison between the two tests suggests the Wald-type test based on Ŵα may under-
estimate the true significance of Γα. The asymptotic variable of Ŵα using the delta method and Slustky’s
theorem, is given as 4(Γ̂′

αW
∗
αΓ̂α). We can contrast the standardized quantity, Ŵ 2

α/4(Γ̂
′
αW

∗
αΓ̂α) with the WS

statistic given in (33). A mathematical relationship from the inequality below (see (Marshall et al., 1979,
p. 659-660)) is useful in this regard:
Lyapunov’s Inequality: If W ∗

α is a positive definite matrix, x is a unit vector, ||x|| = 1, then for a ≥ b ≥ c,

(x′W ∗b
α x)a−c ≤ (x′W ∗c

α x)a−b · (x′W ∗a
α x)b−c

This follows from the fact that (x′W ∗r
α x) can be expressed as the rth moment of a distribution of the

eigenvalues of W ∗
α. Note if we set a = 1, b = 0 and c = −1, (12) reduces to (x′x)2 ≤ (x′W ∗−1

α x)(x′W ∗
αx) and

by setting x = Γ̂α√
Γ̂′
αΓ̂α

, we obtain
(Γ̂′

αΓ̂α)2

4(Γ̂′
αŴ∗

αΓ̂α)
≤ (Γ̂′

αŴ∗−1
α Γ̂α)
4 . Thus the standardized test statistic

(Γ̂′
αΓ̂α)2

4(Γ̂′
αW∗

αΓ̂α)

will grossly underestimate the significance of Γα.
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next section.

5 Sparseness analysis: Which characteristics matter?

The focus of the RRR setup is mainly on the dimension reduction via a low rank structure.

The resulting linear combinations Z ′
tΓβ still require keeping all the asset characteristics

(Zt) in the model. It does not result in any specific variable selection and therefore no

asset characteristic can be discarded. It is possible that many of the entries in Γβ may

not be significant. While the RRR exploits the simultaneous dependence among the asset

characteristics and returns to achieve parsimony in dimension reduction, the sparseness

helps in the selection of key variables in this dependence. We use a sparseness method

where both dimension reduction and variable selection are possible. The integration of

RRR and the sparsity structure can greatly advance the interpretation of empirical results

(Reinsel et al., 2022, Ch. 13). Specifically, imposing Γβ to be sparse would allow us to

isolate the key characteristics behind the extracted factors and thus better understand their

significance. The spirit of this analysis is to address Cochrane (2011)’s critical question,

’Which characteristics do really matter?’.

The procedure consists of two steps: rank determination first and then the rank-constrained

sparse estimation of the component matrices. As given in Bunea et al. (2012), this approach

provides strong theoretical and computational guarantees and is superior to the approach

where the two steps are reversed. Specifically, we modify the GLS criterion (25) by incorpo-

rating a weighted Lasso penalty term as follows:

S(θ) =
1

2T

T+1∑
t=2

[rt+1 − Zt(Γα + Γβft+1)]
′Γt[rt+1 − Zt(Γα + Γβft+1)] + δ ∥ΓβΛ∥1

∝
T+1∑
t=2

(β̃GLS
t+1 − Γα − Γβft+1)

′Z ′
tΓtZt(β̃

GLS
t+1 − Γα − Γβft+1) + δ∥ΓβΛ∥1.

s.t. Γ′
βΓβ = IK , FF ′ = diag(λ1, · · · , λK) = Λ

(34)
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Directly penalizing Γβ is not appropriate because the rescaled versions of Γβ and F

are obtained via singular value decomposition. Singular vectors corresponding to factors

with larger variances, i.e, those with larger singular values (e.g. λ1), can be estimated

more precisely and should therefore contribute more to the regularization, whereas those

corresponding to smaller singular values are not easily identifiable and should not influence

the regularization. Therefore, we introduce the weighted LASSO penalty term, ΓβΛ.

The solution to (34) in its present form is hard to obtain because of the time-varying

weight matrix Z ′
tΓtZt. To get the sparseness results, we simply replace Z ′

tΓtZt by W ≡
1
T

∑T+1
t=2 Z ′

tΓtZt, then the sparseness target function (34) can be written as,

T+1∑
t=2

(W 1/2(β̃GLS
t+1 − Γ̂α)−W 1/2Γβft+1)

′(W 1/2(β̃GLS
t+1 − Γ̂α)−W 1/2Γβft+1) + δ∥ΓβΛ∥1

=∥W 1/2(β̃GLS
′

− Γ̂α1
′
T )−W 1/2ΓβF∥2F + δ∥ΓβΛ∥1 = SW (θ)

s.t. Γ′
βΓβ = IK , FF ′ = diag(λ1, · · · , λK) = Λ

(35)

Problem (35) fits the sparse reduced-rank regression framework studied by Chen and

Huang (2012). Their algorithm can determine the set of significant firm characteristics

uniquely, but the weights assigned to the elements among the corresponding rows in Γβ are

all non-zero. This makes it challenging to determine which firm characteristics mainly drive

specific subsets of factors. Hence, we define Y
L×T

= W 1/2(β̃GLS
′

− Γ̂α1
′
T ) and X

L×L
= W 1/2,

and apply the SOFAR (Sparse orthogonal factor regression) algorithm proposed by Uematsu

et al. (2019) to estimate the sparse matrix Γβ and the non-sparse matrix F containing the

time series of factors. Uematsu et al. (2019) suggest a two-step approach to obtain the

SOFAR estimator. In the first step, they minimize a L1-penalized squared loss for Y = XC

where C = ΓβF to obtain an initial estimator. Because it is theoretically guaranteed that

this initial estimator is not far away from the true coefficient matrix C∗, in the second step,

they minimize the objective function (35) in an asymptotically shrinking neighborhood of

the initial estimator. The details of the algorithm are described in Appendix C. The SOFAR

estimator not only can help us to identify the subsets of significant firm characteristics, but
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also help us to understand which aspects of firm characteristics information mainly drive the

estimated latent factors. Our empirical sparseness analysis results, presented in Section 7.4,

provide valuable economic insights concerning the structure of the RRR GLS factors.

6 Empirical Design

6.1 Data

We use the same data that was studied in Kelly et al. (2019)13 but eliminate stocks with

less then 25 observations. This data is a subset of (36 out of 62 variables) data originally

studied by Freyberger et al. (2020). The asset characteristics are broadly classified into past,

returns(4), investment(3), profitability(10), intangibles(4), value(7), and trading frictions(8).

The nature of these variables suggest that they are likely to be time-varying. The data is

not balanced as the number of assets vary over the duration of the study, Nt ∈ [233, 3680].

Our analysis can accommodate different number of stocks available at different points in

time (as new firms get listed, some existing firms get de-listed, dropped or merged etc..). To

summarize, we have N =
∑T

t=1Nt = 9890 different stocks for the duration of the study (July

1962 − May 2014). The descriptive statistics of the 36 variables are given in Table 1. In

order to show the time-varying nature of the variables, we compute ∆Zi,t = Zi,t−Zi,t−1 and

then the coefficient of variation, a standardized measure, which is the ratio of the standard

deviation of ∆Zi,t and its mean. If the characteristics are not time-varying, the coefficient

of variation is expected to be close to zero. The values reported in Table 1 clearly indicate

that most of the variables vary over time, some with higher volatility than others.

6.2 Performance metrics

In the empirical analysis we assess the performance of the models introduced in Section

2.1 through their mean-variance spanning abilities, measured by the maximal Sharpe ratio,

13For more details refer to section 4.1 of Kelly et al. (2019).
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and the goodness of fit, measured via the BIC and R2
GLS metrics.14 These metrics broadly

cover both the economic as well as the statistical spectrum.

Maximal Sharpe ratio: As standard in the literature, we evaluate the economic per-

formance of our models by their ability to generate factors that can span the unconditional

mean-variance frontier. We do so by examining the in-sample Sharpe ratio of the tangency

portfolio formed by the factors generated by a given model. To justify the adoption of

the unconditional spanning of the mean-variance frontier, as in Kozak and Nagel (2023)

(Assumption 1 and Corollary 2) we assume that stock risk premia µt are linear in the firm

characteristics Zt, or a lower-dimensional linear combination, ZtΓβ. This assumption implies

that factor premia are time invariant and thus they are the risk premia for the tangency port-

folios as well (the numerators of the adopted in-sample maximal Sharpe ratios).15 Following

Barillas and Shanken (2017), we test the relative spanning abilities of any two given models

by examining the difference between the in-sample squared Maximal Sharpe ratios using the

tests in Barillas et al. (2020).16

In the RRR framework when Γα = 0, the tangency portfolio is formed exclusively from

the time series estimates of the latent factors ft+1. In the presence of mispricing (i.e. when

Γα ̸= 0) the latent factors are inefficient, therefore the tangency portfolio is constructed

using the latent factors and the returns of an additional pure-alpha portfolio. This pure-

alpha portfolio is a function of Γα, and is orthogonal to the extracted factors, and such that

when added as an additional factor to the model, the time-varying intercept vanishes (for a

related discussion of such orthogonal portfolios see section 6.6 of Campbell et al. (1998)). A

suitable pure-alpha portfolio for the case of the RRR model (12) then is

fh
t+1 =

[
Γ′
α(Z

′
tΓtZt)

−1Z ′
tΓt

]
rt+1 = Γ′

αβ̃
GLS
t+1 . (36)

14In Appendix D we also provide the analysis with respect to the AIC metric. The insights are the same.
15As already mentioned before and in contrast with Kozak and Nagel (2023), we do not need the linearity

assumption to proof the mean-variance efficiency of the factors. We invoke it here solely to enhance the
interpretation of the unconditional spanning.

16Barillas et al. (2020) provide statistical tests when factors are exogenous (or known), endogenous (or
latent), nontraded and when the tested models have overlapping factors.
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Note that fh
t+1 is a linear combination of the GLS regression coefficients β̃GLS

t+1 which are fac-

tors themselves. When Γt =
1
σ2 INt , (36) reduces to the IPCA “arbitrage” portfolio described

in section 4.5.3. of Kelly et al. (2019).

Goodness of fit: To evaluate the statistical performance of our analyzed models, we

employ two metrics: the BIC and the R2
GLS. While R2

GLS is a standardized metric, BIC is

a comparative metric that penalizes over-fitting, making it suitable for comparing different

models using the same data. Results under the AIC metric, a popular alternative to BIC,

although not discussed in the main text are presented in Appendix D.

BIC: The BIC metric is calculated based on the log-likelihood function of the analyzed

model with a penalty term. Given a set of estimates for the vector of model parameters θ we

can compute the log-likelihood as lnL(θ) ≡
∑T

t lnf(rt+1|Zt; θ) = −1
2

î
ln(2π)

∑T
t Nt +

∑T
t ln|Γ−1

t |
ó
−

TS(θ), where S(θ) is defined in equation (25).17 Then,

BIC = s · ln(T )− 2lnL(θ) (37)

where s represents the total number of estimated parameters,18 and ln(T ) is the natural

logarithm of the total number of observations.

R2
GLS: A readily interpretable criterion as an alternative to BIC is the R2

GLS goodness of

fit measure:

R2
GLS = 1−

∑
t

(
Γ

1
2
t rt+1 − Γ

1
2
t Zt(Γ̂α + Γ̂β f̂t+1)

)′ (
Γ

1
2
t rt+1 − Γ

1
2
t Zt(Γ̂α + Γ̂β f̂t+1)

)
∑

t

(
Γ

1
2
t rt+1

)′ (
Γ

1
2
t rt+1

) . (38)

17For the case of the IPCA model it reduces to lnL(θ) = − 1
2 ln(2πσ

2)
∑T

t Nt−TS(θ) where σ2 represents
the average residual variance. For the fit of model (12) for GLS and OLS factors set Γα = 0 and K = T
while defining Γβ and ft+1.

18s = L+K(T +L)+(N +NI(NI −1)/2)− (K+K2) for the RRR model with Γα ̸= 0 and NI industries.
The terms appearing with a minus sign are the degree of freedom adjustments accounting for the constraints
in (26). When Γα = 0 only K2 is subtracted. The number of estimated parameters for the IPCA model is
the same as that for the RRR model except that we need to replace the number of independent parameters
in the error covariance matrix, N +NI(NI − 1)/2 by unity, which accounts for σ2. For the case of the GLS
factors from model (12) s = LT +N +NI(NI − 1)/2. Finally, for the case of OLS factors s = LT +N + 1.
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Equation (38) extends the R2
OLS used in Kelly et al. (2019) by weighing the returns

rt+1 and characteristics Zt with Γt, the inverse of the error-covariance matrix. Observe the

equation (38) represents the ratio of re-scaled return variances explained by both the dynamic

behavior of the estimated conditional loadings ZtΓ̂β (and estimated time-varying intercept

ZtΓ̂α in the unrestricted model), as well as by the contemporaneous factor realizations f̂t+1,

aggregated over all assets and all time periods. Kandel and Stambaugh (1995) and Lewellen

et al. (2010) argue that the R2
GLS is a more meaningful statistic to assess the mean-variance

spanning abilities of the factors provided by the regression model. Specifically, if the tangency

portfolio formed by a model’s factors is nearly mean-variance efficient, the R2
GLS is close

to one but the R2
OLS does not enjoy such nice property because it is not appropriately

standardized.

6.3 Specification and estimation of the error covariance matrix

As discussed in Section 3, if covariances of the returns in the error terms are used in the

model, the GLS(RRR) factors achieve the best possible mean-variance spanning. However,

estimating the covariance matrix, Σt in a framework like ours and providing a robust time

series of estimates {Γ−1
t }t of large and time-varying dimensions Nt×Nt with Nt ∈ [233, 3680],

entails a daunting task. For an in-depth survey of this topic, refer to Fan et al. (2016a).

A central contribution of this paper is to propose a viable procedure to estimate the co-

variances. Popular approaches generally impose some sort of structure to reduce the number

of parameters to estimate. The commonality literature suggests PCA-based structures (e.g.

Hasbrouck and Seppi (2001)), where the covariances are accounted by a few linear combina-

tions of asset returns. Ledoit and Wolf (2017, 2020) provide shrinkage methods resulting in

a covariance matrix that is a linear combination of a diagonal matrix and a rank one matrix.

Engle and Kelly (2012) focus on covariance matrices with equi-correlated block structures.

Recent developments include thresholding the principal components via shrinkage methods

(see Fan et al. (2013)). These are computationally intensive procedures and to apply them
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in our analysis with time-varying sample sizes, it is even more difficult. So to keep the main

focus on the estimation of GLS factors, we follow an intuitive approach. We first assume

that the covariance matrix of the error term is not time-varying, Σt = Σ and it is posi-

tive definite. We further assume that it has a block structure where each block belongs to

a different industry. The number of industry types is solely determined by the empirical

metrics introduced in Section 6.2. Our design with this approach can reduce the number of

parameters to be estimated in Σ by more than 95%. Industry-grouping seems to be a natural

way of clustering the universe of stocks. More importantly, this choice is supported by the

argument provided in (Daniel et al., 2020, p1931) that industry exposures might represent

a source of unpriced common variation in characteristics-based factor models.

In practice, as mentioned earlier, the estimation of Σ is complicated because at different

points in time, different stocks are available to be included. We therefore make Σ a function

of time merely to keep track of the stock availability, that is, we do not impose any structure

other than the industry structures. Specifically, given I industries we compute the entries

of Σt in two steps by using the T , Nt+1-dimensional vectors of OLS residuals from model

(12). In the first step we collect the time series of the residuals, use them to form I equally

weighted industry portfolios, and then compute the in-sample I×I covariance matrix of such

portfolios. In the second step, for each time t and with available Nt+1 stocks we compute the

Nt+1 × Nt+1 matrix Σt by using the in-sample variances and industry portfolio covariances

from the previous step. For each (i, j) industry pair we assign their covariance to all off-

diagonal entries of Σt of stocks belonging to industry i and j, while all the residual variances

of the available stocks are assigned to the main diagonal.

Different number of industry classifications can provide different specifications for the

time-series of residual covariance matrices Σt. We use the industry classifications available

from K. French website19 and we generate for each t in our sample positive definite matrices

for all the industries. The number of industry classifications that meet the stated require-

ments are the 5,10,12 and 17. We also consider Σt = σ2IN as in the IPCA model with

19https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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no industry distinctions. From the point of view of model fit, Figure 3 clearly shows that

the 17 industry structure is the best. It has the lowest BIC and the highest R2
GLS values

and maximal Sharpe ratio. Generally, all measures improve with the size of the industry

classification. We therefore use the 17 industry structure in our empirical analysis.

7 Empirical Results

The results presented in this section are based on the entire sample, except for out-

of-sample testing, where a subset of data is set aside for validation. We conduct both

cross-sectional and chronological validations. In order to show that our findings are not just

dependent on the data of interest, we also carry out a simulation exercise that can apply to

a more general setting.

7.1 L Characteristics-based Factors

As noted earlier, at the population level, the GLS factors should perfectly span the mean-

variance frontier both conditionally and unconditionally, while other characteristics-based

factors that disregard the information contained in the covariance of stock returns should be

suboptimal. Consistently, we can observe from Figure 3 that GLS factors achieve the highest

unconditional spanning and the best fits (in terms of R2
GLS and BIC). Table 2 shows how the

maximal Sharpe ratio obtained from the GLS factors with the 17-industry structure for the

covariance matrix of residuals, β̃GLS, compares with the Sharpe ratios obtained from the OLS

factors, β̃OLS, and with the Sharpe ratios obtained from a set of ten OLS hedged factors,

obtained through ten rounds of hedging. The hedging procedure is detailed in Appendix

A. The GLS spanning is the highest, with a difference (β̃GLS −maxi ̸=GLS{β̃i}) in maximal

Sharpe ratio of at least 0.26. Therefore, for a volatility of 20%, the GLS factors provide

investors with an unconditional risk premium that at least is 5.2% higher than what other

factors can provide. As reported in the third column of the table, the difference between
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the performance of the GLS factors and other factors is always statistically significant, with

p-values less than 0.025. Notice also how the OLS spanning results in the lowest Sharpe

ratio and how sequential hedging does help remove some of the unpriced risk. However,

sequential hedging can at best cover only a third of the gap that separates the OLS from

the GLS spanning (that is, 0.13 out of a 0.39 gap).

These results show the importance of incorporating information from the covariance

matrix of returns and how this might be a preferable option than to engage in a discretionary

number of sequential hedging to try recovering such information in models that disregard it.

7.2 K(≤ L) Lower-Dimensional Factors

While we have shown empirically that (under the 17-industry structure) the feasible (L =

37)-dimensional GLS characteristics-factors achieve the highest unconditional spanning, it

is possible that these characteristics may carry similar, somewhat duplicate information.

Therefore, more parsimonious (K < L)-dimensional subset or combinations of characteristics

may capture the same information and if so, they are of economic interest. Theoretically

we know that such factors also span the mean-variance frontier given a proper subset of K

linear combinations (ZtΓβ) of stock characteristics Zt. Moreover, models that use redundant

information may run into overfitting issues while tested out of sample.

Spanning: Figure 4 plots the maximal Sharpe ratios of the RRR(red line) and IPCA(black

line) factors with(solid line) and without(dashed line) the mispricing vector Γα as a function

of the number of extracted risk factors K. When K = L, we get the spanning plotted as hor-

izontal lines of the GLS (in red) and OLS (in black) factors with all variables. The spanning

of the RRR(IPCA) factors converges from below to that of the GLS(OLS) factors. Thus the

maximal Sharpe ratio of the GLS factors act as an empirical upper bound on the highest

achievable unconditional spanning under our design. Note that with the IPCA factors, the

bound is not reachable. Further observe, as suggested by theory, for any given K : K ≥ 5

the spanning of the RRR factors when Γα = 0 is consistently the highest.(As we discuss
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later in Section 7.3, when K < 5 the RRR model with Γα = 0 is likely to be misspecified.)

Finally, no matter what Γα is and what the numbers of extracted risk factors are, the RRR

model always achieves a higher spanning than the IPCA model. This can be attributed to

incorporating the covariance information in the model.

In Table 3 for each K, the number of extracted risk factors, we provide the statistical

significance in the difference of spanning among the relevant analyzed factors. As reported

by the first column, it takes 18 factors for the RRR with Γα = 0 to produce a spanning

that is not different from the upper bound achieved by the 37 GLS factors at the 5% level.

This finding suggests that these 18 factors capture comparable pricing information, and a

more parsimonious model is attainable. In contrast, as confirmed by the second column, the

spanning of the IPCA factors are always significantly lower than the spanning that results

from the GLS upper bound. This corroborates the finding of DeMiguel et al. (2020) and

Kozak and Nagel (2023) regarding the inefficiency of OLS-type factors. The third column

confirms that the spanning of RRR factors with Γα = 0 is always higher than the spanning

of IPCA factors (with the exception of the range K ∈ [8, 14] where RRR factors with Γα = 0

are still point-wise higher than the corresponding versions in the IPCA setup as shown in

Figure 4). Finally, the last two columns display the impact of mispricing in the RRR and

IPCA models. This is discussed in detail below.

Mispricing: In the population, given a subset of K stock characteristics, the RRR

model with Γα = 0 produces mean-variance efficient factors. Therefore when Γα is not zero,

we also know the extracted factors are not efficient. Thus a non-zero Γα can be taken as a

proxy for mispricing.

Figure 5 plots the p-values for testing the null of Γα = 0 (top graph) and the absolute

differences in the mean-variance spanning generated by a non-zero Γα (bottom graph) for

the RRR and IPCA models as a function of the number of extracted risk factors K. The

points in the bottom graph with asterisk refer to quantities that are significant at the 5%

level, using the test for the difference in maximal squared Sharpe ratios, developed in Barillas

et al. (2020). The actual p-values are reported in the last two columns of Table 3. We can
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state that it takes at least 28(25) factors for the effect of mispricing to become irrelevant

for the RRR(IPCA) model. This is (roughly) confirmed by the p-values from the Wald test

developed in Section 4.2 against the null of Γα = 0, which gets higher than 5% only after

K = 30(32) for the RRR(IPCA) model.

The availability of a limiting distribution for the regression parameters allows us to better

assess the role of mispricing coming from the stock characteristics Zt. In contrast to Kelly

et al. (2019) (due to a bias in resampling), we find mispricing to be non-negligible both in

the RRR and the IPCA formulations. As a matter of fact, using the code provided for the

IPCA model, we find that we could not reject the null at 1% level in the presence of K = 5

factors; moreover from K > 6 we could not reject at any conventional level. However, this

conclusion, for the most part, is in sharp contrast to the significant impact that Γα has in

the unconditional mean-variance spanning as reported by the black line in the bottom graph

of Figure 5. The reported empirical impact of Γα is instead in line with the p-value of our

proposed Wald test as displayed by the black line in the top graph of Figure 5.

Goodness of Fit: Figure 6 reports the goodness of fit measures discussed in Section

6.2 for the RRR and the IPCA models in red and black respectively. Measures for models

with(out) Γα are displayed in solid(dashed) lines. The RRR model has a better fit as per

the BIC criterion. Also, after few risk factors K are extracted the impact of Γα becomes

negligible. This is in line with theory as eventually Γα becomes 0 when K → L as there

should be no mispricing.

From the R2
GLS metric, the top graph in the figure, we can translate the detected superior

fit of RRR models into their ability to consistently explain more of the total variation in

the cross-section of stock returns. Observe how the gap between RRR and IPCA models

keep widening as we extract more factors. This also implies that the RRR models are more

parsimonious; To give some perspective, notice that in the presence of eight factors the RRR

models can roughly explain 21.6% of the total cross-sectional variation, to explain the same

variation the IPCA models require all 37 factors. Finally, as for the case of BIC and in line

with theory, after few (K) risk factors are extracted the impact of Γα becomes negligible.
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Efficiency of GLS estimators: In Section 3 we have shown how in the population

the GLS estimators for the extracted GLS/RRR factors are more efficient. Here we want

to relate this fact to the higher mean-variance spanning that these factors can provide.

Recall that the Sharpe ratio of the tangency portfolios formed by the factors consists of

two components, the average excess returns as the numerator and the standard deviation of

the returns as the denominator. Thus assessing the source of the superior spanning comes

down to assessing the marginal contribution of the numerator as opposed to that of the

denominator. We find that the main reason for the higher GLS/RRR spanning is the lower

volatility coming from their tangency portfolios. Therefore the higher statistical efficiency

of the GLS estimators translates to the ability of the GLS/RRR factors to achieve a higher

mean-variance spanning. The fourth and fifth column of Table 2 report the decomposition

of the maximal Sharpe ratios for the GLS, OLS and hedged-OLS factors when K = L

(excess returns and volatilities of the tangency portfolios respectively). Notice how the

higher spanning of the GLS factors come from the ability of the GLS factors to achieve

a tangency portfolio with the lower level of volatility, although the OLS factors and their

hedged adjusted factors have higher excess returns.20 The hedging adjustments help reduce

the volatility of the OLS factors but not to the extent reached from the use of the covariance

of returns in the RRR modeling. According to the mean-variance theory the fact that GLS

factors provide a higher mean-variance spanning while guaranteeing a lower risk premium

than OLS factors implies that investors who have access to a better proxy for risk (through

the residual covariance matrix specification of our setup) should become more cautious in

taking on risk. This is because the implied aggregate risk aversion from the GLS tangency

portfolio is lower than that of from the OLS tangency portfolio.21 Also as reported in Figure

20The only exception is the OLS factors with nine rounds of hedging which have a lower volatility of the
GLS factor but also a lower average excess return.

21Here is the proof that if the tangency portfolio formed by GLS factors has a higher spanning but a lower
risk premium with respect to the tangency portfolio formed by OLS factors then the implied risk aversion from
the GLS tangency portfolio must be higher. Let β̄f and Γ̂f be the sample mean vector and precision matrix
(inverse of the covariance matrix) for the factors f ∈ {GLS,OLS}. Then the maximal square Sharpe ratio

from f is β̄f ′Γ̂f β̄f and the risk premium for the tangency portfolio is 1
λf β̄

f ′Γ̂f β̄f where λf = 1
1′Γ̂f β̄f

represent

the tangency portfolio implied risk aversion. Because empirically β̄GLS ′
Γ̂GLS β̄GLS > β̄OLS ′

Γ̂OLS β̄OLS and
1

λGLS β̄
GLS ′

Γ̂GLS β̄GLS < 1
λOLS β̄

OLS ′
Γ̂OLS β̄OLS it follows that λGLS > λOLS .
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7 for the leading case of Γα = 0, the volatility and excess return of the factors’ tangency

portfolios of the RRR models (dashed red lines) are consistently smaller than those of the

IPCA models (dashed black lines).22 These results highlight the crucial role played by the

information from the covariances.

7.3 Optimal Model Choice

Results thus far show how RRR factors can more parsimoniously and efficiently span the

mean-variance frontier. Selecting a best model thus comes down to deciding K, the optimal

number of factors to extract. Observe that such a choice also depends on the presence of

the mispricing vector Γα in the model. In this section we argue that the RRR model with

five factors and Γα = 0 is reasonably a good candidate.

The RRR setup takesK, the number of factors to extract, as given and provide the closest

K-dimensional approximation of the GLS factors according to the GLS criterion (25). A

closer look at the structure of β̃GLS, the T × L matrix stacking the GLS factors as rows,

can help develop a data-driven estimate for K, namely its empirical rank. Reinsel et al.

(2022) suggest estimating such rank by looking at the eigenvalues of a standardized version

of β̃GLS. A natural standardization for our setup is β̃αΓ
xβ̃′

α, where β̃α =
Ä
IT − 1T 1′T

T

ä
β̃GLS

and Γx =
∑

tN
2
t+1(Z

′
tΓtZt)

−1/T represents the inverse of the average covariance matrix of

residuals from the RRR model (12) when applied to characteristics-based portfolios returns

Xt = Z ′
tΓtrt+1/Nt+1.

The bottom graph of Figure 6 plots, in order of importance, the eigenvalues of β̃αΓ
xβ̃′

α. As

we can see the first few eigenvalues capture the majority of the variation in β̃GLS. Moreover,

as shown in the second graph from the top, the BIC metric suggests an RRR model that

extracts K = 7 as the best model. Thus, overall the analysis indicates that perhaps fewer

factors than suggested by BIC need to be extracted, for the RRR model to be correctly

specified.

22Such patterns are also found for the unreported case of Γα ̸= 0
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These results give an explanation of why the spanning of the RRR model with Γα = 0

reported in Figure 4 is suboptimal for K < 5: insufficient extraction of factors can lead to

model mis-specification. More specifically, the significance of a higher spanning for K < 5

resulting from mispricing (indicated by the fact that the RRR model with a nonzero Γα

outperforms the RRR model with Γα = 0 at any conventional level) can be attributed to

additional unextracted factors that are actually required to be in the model.

We can now use the spanning results from Figure 4 to select a model with a specifi-

cation that strikes a desirable balance between parsimonious number of factors to extract

and maximal achievable Sharpe ratio. The RRR model with Γα = 0 and K = 5 seems to

stand.23 Its maximal Sharpe ratio of 4.61 covers approximately 80% of the maximum achiev-

able spanning of the full L = 37-dimensional GLS factors. Adding more factors can only

marginally contribute to the spanning as the additional 32 extractable factors would result

in an increment of the maximal Sharpe ratio by 20%. On the other hand, extracting one

less factor would cause the RRR factors from the model to only cover 25% of the maximum

achievable spanning, with a maximal Sharpe ratio of 1.46.

Also notice that the RRR model with Γα = 0 and K = 5 has a maximal Sharpe ratio

of 0.27 higher than the analogous version of IPCA, the best model according to Kelly et al.

(2019). The increase in Sharpe ratio is significant at the 10% level and allows the RRR model

to deliver an extra premium of 5.4% given a volatility level of 20%. This makes the RRR

model better than the models that are compared with the IPCA model, namely, the CAPM

and the Fama and French factors models in their specifications including three through six

factors.

7.4 Sparseness Results

We first verify the validity of the sparseness framework before presenting our empirical

findings. By employing the sparseness method and utilizing additional information derived

23We also test and confirm the stability of the significant number of factors, that is five, under different
market conditions (such as during NBER recessions and high and low volatility).
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from the covariances of returns, we can obtain a more precise interpretation of the extracted

factors. Specifically, the first factor represents the market exposure, the second factor is a

proxy for size exposure, and the next two factors serve as proxies for momentum, while the

fifth factor is a liquidity factor and plays a marginal role.

Validation of the setup: In Section 5 we replaced Z ′
tΓtZt with its temporal average

W ≡ 1
T

∑
t Z

′
tΓtZt to be able to implement the sparseness analysis, that is, to run the SOFAR

algorithm. In this subsection we check the impact of such assumption.

Specifically, in Section 7.3 we have concluded that the RRR model with Γα = 0 and

K = 5 can be reasonably taken as the best model. Therefore, here we check the validity of

the sparseness setup for that select model and its equivalent IPCA formulation. We do so

by implementing the SOFAR algorithm with no sparse penalty (i.e. δ = 0) and compare its

GLS R2 and unconditional maximal Sharpe ratio with those obtained from the baseline setup

(PLS algorithm with Z ′
tΓtZt). This way differences should only come from the questioned

assumption. We find the maximal Sharpe ratio(GLS R2) of the RRR model with Γα = 0 and

K = 5 to be 4.68(0.206) under the SOFAR algorithm and 4.61(0.209) in the baseline setup.

Similarly, we find the maximal Sharpe ratio(GLS R2) of the IPCA model with Γα = 0 and

K = 5 to be 4.34(0.198) under the SOFAR algorithm and 4.33(0.20) in the baseline setup.

Therefore, we may conclude that replacing Z ′
tΓtZt with its temporal average has at most a

second order impact in the sparseness analysis.

Empirical results: Having confirmed that the necessary assumption for running the

proposed sparseness algorithm is satisfied, we proceed to apply the SOFAR algorithm to the

RRR and IPCA models with Γα = 0 and K = 5 to conduct the sparseness analysis. It is

worth noting that increasing the LASSO penalty δ in the objective function (35) leads to

greater sparsity in Γβ. We select the highest possible value for δ while ensuring that Γβ is

of rank 5 in both setups.

The RRR model generally selects fewer characteristics. Out of the full set of 36 character-

istics (37 including the constant), only six appear to be sufficient (7 counting the constant).

These characteristics are marked with asterisks in Table 1 and they belong to either the
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“Past Returns” or the “Trading frictions” category. They are: momentum and short term

reversal, as well as market capitalization, market beta, turnover and the price relative to the

previous 52-weeks high. These characteristics also represent six out of the ten characteristics

that are found to be significant at the 1% in Kelly et al. (2019) for the corresponding version

of the IPCA model. The sparseness version of the IPCA model selects 5 more characteristics

as shown in Figure 824.

The RRR model with all characteristics remains the best performer as reported in the

top panel of Table 4 under the column named ”Baseline”. Its maximal Sharpe ratio is the

highest (see the maximal Sharpe ratios and the p-values on the differences with respect to

the Sharpe ratio of the RRR baseline model in the first and second row respectively). As

before, the reason of a higher Sharpe ratio with respect to the IPCA setup comes from the

lower volatility of its tangent portfolio. Within the RRR setup instead, reducing the number

of characteristics decreases the volatility of the tangency portfolio even further but also more

than proportionally reduces its excess return. The RRR model in the baseline setup also has

the best goodness of fit with the highest GLS R2 and the lowest BIC values.

A significant benefits of using a sparse design is that it enables a more direct interpretation

of the extracted factors when incorporating information from the covariance of returns.

As shown in the lower panel of Table 4, the time-series of the SOFAR factors and the

baseline (five) factors ft+1 exhibit strong correlations in both the RRR and IPCA models.

Specifically, all correlations are generally high, with none smaller than 0.5. In Figure 8,

we present heatmaps that depict the nonzero entries of the sparse loading matrices Γβ.

This visualization highlights the importance of incorporating information from the second

moments of returns, as the structure of the RRR matrix is notably simpler, enabling an

easier interpretation of the key determinants that underlie each factor (i.e., the columns of

Γβ).

Specifically, the heatmap for the RRR model reveals that the first factor, which accounts

24We remove characteristics that have all zero coefficients in both the IPCA and RRR setups. Therefore,
in Figure 8, we only display the selected characteristics that have at least one non-zero coefficient under
either the IPCA or RRR model.
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for 49% of the cross-sectional variation, is primarily driven by the constant term and the

variation in the stock market betas. The second, the third and the fourth factor, explain

28%, 12% and 11% of the cross-sectional variation respectively and are each driven by a

single characteristic: size and two proxies for momentum. Finally the fifth factor explains

less then 1% of the cross-sectional variation and shares a similar structure with the first

factor, but with the turnover variable in place of the market betas. As all the sparse factors

are orthogonal, the fifth factor primarily captures liquidity information, while the first factor

primarily captures market exposure. We therefore can interpret the first factor as a proxy

for the market exposure, the second as a proxy for the size exposure and the next two as

proxies for momentum while the fifth factor is a liquidity factor and plays a marginal role.

The extracted factors load on similar exposures to the one typically found in the literature,

for example the Fama and French models. However, the exposure of our factors are directly

extracted from the stock characteristics while those from the literature typically come from

sorted portfolios.

In summary, the sparseness design used in conjunction with the RRRmodel is particularly

more useful for interpreting the nature of the extracted factors when information from the

covariance of returns is utilized. The visualization of the nonzero entries of the sparse loading

matrices enables us to identify the key determinants that drive each factor, and thus allowing

for valuable insights into the structure and interpretation of the factors.

7.5 Out of sample results

This section analyses the out-of-sample performance of the RRR model with Γα = 0 and

K = 5 along two different cross-sectional and temporal dimensions. In the cross-sectional

out-of-sample exercise we randomly leave out 20% of stocks evenly from each industry group

that was used to construct Σt as explained in Section 6.3. We fit the model using the

remaining 80% of the data and evaluate the fit and spanning in the remaining 20%. In the

temporal out-of-sample exercise, we recursively estimate the model over a 20-year rolling
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window (i.e. we compute Σt and Γβ,t using only the data available in the rolling window)

and produce the one step ahead tradable factors f oos
t+1 = (Γ̂′

β,tZ
′
tΓtZtΓ̂β,t)

−1Γ̂′
β,tZ

′
tΓtrt+1. We

then use the produced time series of estimates to evaluate the model performance. Table 5

reports the out-of-sample performance of the best models from the RRR and IPCA versions.

The performance of the best model is found stable both in terms of spanning and good-

ness of fit. The in-sample maximal Sharpe ratio is 4.607, while the out-of-sample cross-

sectional(time-series) ratio is 4.517(4.077), indicating consistency. Similarly, while the in-

sample GLS R2 is 0.209, the out-of-sample cross-sectional R2 is even better at 0.236, while

the out-of-sample time-series R2 of 0.202 is very close to the in-sample one.

Also the best RRR model continues to outperform its IPCA analog both in terms of

economic and statistical criteria. The difference in maximal Sharpe ratio is roughly 0.3(1)

for the cross-sectional(time-series) case, and it is statistically significant. This superiority is

due to the higher efficiency of the RRR estimates, which is reflected in the lower volatility

of the tangency portfolio (as shown in the fourth row of Table 5) and the ability of the RRR

factors to produce a tangency portfolio with higher excess returns (as shown in the third

row of Table 5). As far as the statistical fit is concerned, the RRR model has slightly higher

GLS R2: 0.236(0.202) in the cross-sectional(time-series) setup, compared to 0.228(0.190) for

the IPCA analog.

In summary, the best RRRmodel outperform its IPCA analog both in- and out-of-sample.

7.6 Simulation results

To make sure that the findings are not data-specific, in this section we conduct a simula-

tion exercise to more precisely quantify the performance of the RRR and the IPCA models

for the case of Γα = 0 and K = 5. We have already shown the RRR model’s superiority

first theoretically and then empirically using a specific dataset. In this section we assume

the data generating process for rt+1 is known and measure, in addition to the mean-variance

spannings of the RRR and the IPCA factors, how close can the RRR and IPCA estimates
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get to the true parameters .

Specifically, taking the firm characteristics data {Zt}t and residual covariance matrices

{Σt}t as given, we assume that the data generating process for the excess returns rt+1 follows

the same setup as in (12)-(14), and generate 1,000 hypothetical datasets. For each dataset we

generate T = 599 observations for rt+1 using (12) and random draws for βt+1 and ϵt+1 from

the distributions in (14) where β̃GLS
t+1 and Σt are the in-sample estimates from the analysis

in Section 7. We then estimate the RRR and IPCA models with Γα = 0 and K = 5 using

the generated dataset. We obtain for each model the estimate for the loading matrix Γ̂β and

the K × T matrix of estimated factors F̂ = [f̂2, ..., f̂T+1].

To measure in a given generated dataset how close to β̃GLS
t+1 , the true value of β̃t+1, the

product of Γ̂β and f̂t+1 is, we compute the distance between C̃ ′ = [β̃GLS
2 , ..., β̃GLS

T+1 ], the T ×L

matrix stacking the true values {β̃t+1}t over time, and F̂ ′ · Γ̂′
β; that is D ≡ ||C̃ ′ − F̂ ′Γ̂′

β||F .

The average difference across the generated datasets are for RRR, DRRR = 5.223 and for

IPCA, DIPCA = 5.273. The difference between these two estimates is significant with a

p-value near zero. A larger DIPCA implies that the IPCA estimators have larger estimation

errors, which is consistent with our theoretical results.

We also computed for each generated sample the maximal Sharpe ratio obtainable from

the factors of each model. The average maximal Sharpe ratio from the RRR factors is 1.82,

which is 8.56% more than the Sharpe ratio from IPCA factors (1.68). The difference is

statistically significant. It is also economically significant because the difference of 0.14 in

Sharpe ratios can generate a 2.8% extra risk premium in normal market environment (as-

suming an annual market volatility of 20%, which is the average VIX level from 2000 to

2022). As shown in the empirics and as implied theoretically, the superior spanning of the

RRR factors decisively comes from a lower median volatility for the tangency portfolio (0.671

versus 0.689), but the median excess return for the portfolio is higher for the IPCA (1.22

versus 1.15). Similar to the in-sample analysis, a better estimate for the factor risks, achieved

through the imposed structure on the residual covariance matrix, can yield several benefits.

These benefits include reducing the volatility of the tangency portfolio and increasing its
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returns by eliminating unpriced risk, which can be considered as a form of estimation error.

Furthermore, the RRR model has a significantly smaller standard deviation from the distri-

bution of maximal Sharpe ratios (0.103) than that of the IPCA model (0.132), indicating

that the RRR setup produces more stable maximal Sharpe ratios. Therefore the simulations

confirm the crucial role played by the more efficient GLS estimators for the RRR factors in

reaching a higher and more stable mean-variance spanning. As shown here, this conclusion

is not data specific and can apply to more general settings.

8 Conclusions

In this paper we introduce a unifying econometric framework for characteristics-based

(conditional) factor models via the method of reduced rank regression. Our setup general-

izes the IPCA model of Kelly et al. (2019) and the PPCA model of Fan et al. (2016b) by

accommodating the cross-sectional dependence in the error terms via the error covariance

matrix. Our setup recovers the properties of the estimators of the GLS factors, also de-

scribed in Kozak and Nagel (2023) at the population level, as well as the lower dimensional

approximations.

The main insight of our work is to document the crucial role played by the informa-

tion contained in the covariances of returns. As noted in (Daniel et al., 2020, p. 1932),

”... the characteristic-sorted portfolios ... can be improved by taking into account histor-

ical information on the covariance structure.” But there are challenges in estimating large

covariance matrices. While economic theory would suggest that including the covariance

matrix of return in the construction of characteristics-based factors is a necessary condi-

tion for mean-variance efficiency, empirically it arises naturally because of the co-movement

of asset returns. This introduces constraints across regression coefficients. If there are no

constraints, the dependence across equations is not utilized. Theoretical and empirical ar-

guments not only offer different perspectives but actually complement each other. We find,

both empirically and via simulations, that the higher mean-variance spanning of models
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that use the information from the covariances of returns is driven by the higher efficiency of

the GLS estimators.25 According to the mean-variance theory the fact that GLS estimators

provide a higher mean-variance spanning while guaranteeing a lower risk premium implies

that investors who have access to a better proxy for risk (through the residual covariance

matrix specification of our setup) should become more cautious in taking on risk.

Another interesting insight is the role played by sparseness on top of the constrained

regression. By making the factor loadings matrix sparse, we can better understand the

nature of the extracted factors. Once again incorporating the stock covariances results in

more parsimonious models. For the case of the selected model, that is for the RRR model in

the absence of mispricing with five factors, sparsity leads to a straightforward interpretation

of the first factor as the market, the second as the size, the third and forth as momentum,

and the fifth as illiquidity.

Further, the derivation of the limiting distributions for the estimators of the model pa-

rameters enables more direct and less computationally intensive closed form tests. It also

highlights a bias in the IPCA inferential setup, that leads to underestimation of the role of

mispricing in the data analyzed by Kelly et al. (2019). We do provide a method to correct

the bias.

The proposed RRR model can be expanded to handle non-linear characteristics by first

extracting the non-linear signals contained in the matrix of characteristics (for example by

random Fourier features, see Rahimi et al. (2007,2008)) and then use the expanded matrix

of characteristics as the new set of characteristics for the analysis. The model can also be

used to rigorously test the value added by the stock characteristics beyond known/classical

factors such as Fama and French factors. Although the focus of this paper has been on

the RRR models with independent errors, the model can easily include an autocorrelation

structure in the error terms. We leave these interesting venues open for future research.

25Kozak and Nagel (2023) propose a hedging method that does not require inverting a large error-
covariance matrix. The empirical results show that multiple rounds of hedging lead to some improvement
over OLS estimators but not nearly as good as the GLS estimators. Therefore the estimation of a large
covariance matrix and its inverse is of a great deal of importance.
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Figure 1: The Bias in the IPCA Inference
The figure reports the (scaled) bootstrapped distribution from the test developed in Kelly et al.
(2019) (blue lines), its approximate limiting distribution (black lines), and the in-sample (scaled)
test statistic (red vertical lines) for an IPCA model that extracts six time-varying factors in the
presence of mispricing (i.e. with Γα ̸= 0). In the top graph (a) the boostrapped distribution is
generated using the code from Kelly et al. (2019) while in the bottom graph (b) it is adjusted

by assuming that the error term is normal with covariance σ2 · Z′
tZt

Nt
. In the legend, next to each

distribution we also report its p-value against the null Γα = 0.
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Figure 2: Power functions for the Ŵα and WS test statistics
Comparison of the power function for the Ŵα and WS test statistics defined in (32) and (33). For
demonstration purpose, we set Γα = α1L, for 0 < α < 1, the probability of rejection of H0 : Γα = 0
is calculated using (32) and (33).
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Figure 3: Performance Criteria for Industry Sizes
The BIC, R2

GLS and maximal Sharpe ratios (Max.SR) for the covariance structures with 5,10,12
and 17 industries. We refer to the 0-industry structure as a diagonal matrix representing the firm
residual variance, Σ = diag(σ2

i ). When Σ = σ2It the GLS factors reduces to the Fama and French
(2020) OLS factors.

0 5 10 12 17

# of industries

-1.83e+06

-1.81e+06

-1.21e+06

-1.18e+06

B
IC

// //

GLS

OLS,BIC=-1207428

0 5 10 12 17

# of industries

0.215

0.216

0.233

0.236

R
2 G

L
S

// //

GLS

OLS, R2
GLS

=0.216

0 5 10 12 17

# of industries

5.318

5.418

5.604

5.850

M
a

x
 S

R

// //

GLS

OLS, Max SR=5.418

52

Electronic copy available at: https://ssrn.com/abstract=4083935



Figure 4: Maximal Sharpe Ratios
This figure illustrates the unconditional maximal Sharpe ratios of the RRRI17 and IPCA models
as well as the maximal Sharpe ratios of the BARRA/OLS factors and the feasible GLS factors.
Ratios referring to models with(out) the intercept are plotted using solid(dashed) lines.
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Figure 5: Test for Mispricing
The figure plots the p-values for testing, H0 : Γα = 0 (top graph) and the absolute differences in
the maximal Sharpe ratios with and without Γα (mispricing) in the RRR and IPCA models for
various number of extracted risk factors K. The stars in the bottom graph refer to quantities that
are significant at the 5% level using the test for the difference in maximal squared Sharpe ratios
developed in Barillas et al. (2020).
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Figure 6: Goodness of Fit Measures
The first two plots in the figure reports the goodness of fit measures discussed in section 6.2 for
the RRR and the IPCA models in red and black respectively. Quantities of models with(out) Γα

are displayed in solid(dashed) lines. The last plot displays a RRR diagnostic discussed in section
7.3 mapping the marginal contribution of each additional extracted factor. The first few factors
account for the majority of the contribution.
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Figure 7: Decomposition of maximal Sharpe ratios
The figure reports the decomposition of maximal Sharpe ratios of the RRR and IPCA factors in
the absence of mispricing (when Γα = 0).
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Figure 8: Sparse matrices in the presence of five factors and no mispricing
The figure reports the selected firm characteristics and their weights inside the sparse loading matrix
Γβ produced by the SOFAR algorithm for both the RRR and the IPCA models when K = 5 and
Γα = 0.
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Table 1: Descriptive statistics for firm characteristics
Characteristics with asterisks are selected through the sparseness test for a five-factor RRR model
in the absence of mispricing (Γα = 0).

Characteriscs Mean Median Std Std of ∆Zt
Coefficient of
Variation

Past Returns
short term reversal* 0.01 0.00 0.17 0.24 17.84
momentum* 0.15 0.06 0.71 0.35 2.34
intermediate momentum 0.08 0.03 0.47 0.29 3.63
long term reversal 0.35 0.13 1.29 0.52 1.46
Investment
investment 0.16 0.08 0.67 0.23 1.45
net operating asset 0.67 0.68 0.50 0.15 0.23
∆PPE/∆TA 0.09 0.05 0.29 0.10 1.14
Profitability
earning to price -0.02 0.05 0.59 0.21 -11.17
return to equitiy 0.05 0.10 1.98 0.71 14.77
capital turnover 1.41 1.24 1.26 0.21 0.15
sale to assets 2.76 2.08 59.66 21.13 7.65
profit margin -0.13 0.07 7.95 2.46 -18.27
return on net operating assets 0.30 0.14 25.97 10.74 36.39
return to assets 0.02 0.04 0.19 0.05 2.23
gross profitability 1.15 0.71 16.05 6.40 5.57
SGA to sales 0.56 0.27 1.12 0.25 0.45
price to cost margin 0.36 0.35 1.71 0.61 1.71
Intangibles
operating accruals -0.89 -0.03 582.38 255.71 -288.90
operating leverage 1.15 1.02 0.95 0.09 0.08
cash to short term investment 0.13 0.07 0.16 0.02 0.18
fixed costs to sales 0.52 0.24 9.23 2.45 4.72
Value
assets to market 2.83 1.40 7.07 1.61 0.57
book to market 0.89 0.65 0.98 0.24 0.27
Tobin′s Q 1.67 1.20 1.73 0.40 0.24
cash flow to book -0.15 0.04 5.19 1.87 -12.47
leverage 0.32 0.30 0.24 0.03 0.10
sales to price 2.78 1.31 5.47 1.13 0.41
capital intensity 0.04 0.04 0.04 0.01 0.19
Trading frictions
market capitalization* (billion) 1.84 1.17 11.38 1.01 0.55
market beta* 1.00 0.93 0.62 0.08 0.08
turnover* 0.10 0.05 0.21 0.19 1.94
price relative to 52week high* 0.73 0.78 0.21 0.10 0.13
idiosyncratic volatility 0.03 0.02 0.03 0.02 0.76
unexplained volume 0.24 -0.19 3.04 4.25 17.65
bid ask spread 0.04 0.02 0.07 0.02 0.56
total assets (billion) 2.42 0.16 28.54 1.27 0.53
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Table 2: Maximal Sharpe ratios when K = L
The table reports the Maximal Sharpe ratios of the feasible GLS factors β̃GLS under a 17-
industry block structure for the covariance matrix of the residuals, the BARRA/OLS
factors β̃OLS, and ten different versions of hedged OLS factors β̃h,1, ..., β̃h,10 obtained
using the Kozak and Nagel (2023) procedure detailed in Appendix A. The third column
additionally reports the p-values on the difference of a given Maximal Sharpe ratio and
that generated from the GLS factors β̃GLS. The fourth and the fifth columns report
the average excess returns (Sharpe ratio numerators) and the volatilities (Sharpe ratio
denominators) of the tangent portfolios generated by the factors.

factors Sharpe ratio p− value Mean excess return Volatility

β̃GLS 5.81 − 0.296 0.051

β̃OLS 5.42 0.005 0.842 0.155

β̃h,1 5.54 0.023 0.405 0.073

β̃h,2 5.49 0.009 0.389 0.071

β̃h,3 5.55 0.025 0.323 0.058

β̃h,4 5.51 0.010 0.334 0.061

β̃h,5 5.55 0.024 0.296 0.053

β̃h,6 5.51 0.010 0.317 0.058

β̃h,7 5.55 0.022 0.282 0.051

β̃h,8 5.51 0.009 0.305 0.055

β̃h,9 5.55 0.021 0.273 0.049

β̃h,10 5.51 0.009 0.297 0.054
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Table 3: P-values behind the unconditional spanning displayed in Figure 4
The table reports the p-values against the null that the differences in the maximal Sharpe ratios
generated by factors x and y are zero. Column two through column six report the differences on the
tested (x, y) pairs. β̃GLS are the feasible regression GLS factors under a 17-industry block structure
for the covariance matrix of the residuals, f̂GLS

Γα=0(f̂
IPCA
Γα=0 ) are the RRR(IPCA) factors in the absence

of mispricing, and f̂GLS(f̂ IPCA) are the RRR(IPCA) factors in the presence of mispricing.

(x, y): Maximal SR(x)− Maximal SR(y)

# of factors (β̃GLS , f̂GLS
Γα=0) (β̃GLS , f̂ IPCA

Γα=0 ) (f̂GLS
Γα=0, f̂

IPCA
Γα=0 ) (f̂GLS

Γα=0, f̂
GLS) (f̂ IPCA

Γα=0 , f̂ IPCA)

1 0 0 0.07 0 0
2 0 0 0.03 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0.08 0 0
6 0 0 0.01 0 0
7 0 0 0.01 0 0
8 0 0 0.86 0 0
9 0 0 0.83 0 0
10 0 0 0.15 0 0
11 0 0 0.62 0 0
12 0 0 0.62 0 0
13 0 0 0.76 0 0
14 0 0 0.91 0.01 0
15 0.03 0 0.02 0 0
16 0.02 0 0.02 0 0
17 0.02 0 0.01 0 0
18 0.07 0 0.01 0 0
19 0.12 0 0.02 0 0
20 0.07 0.01 0.09 0 0
21 0.09 0.01 0.08 0 0
22 0.11 0.01 0.11 0.28 0
23 0.1 0.04 0.23 0.15 0
24 0.48 0.04 0.06 0 0
25 0.62 0.03 0.04 0 0.26
26 0.39 0.03 0.04 0 0.06
27 0.31 0.02 0.03 0 0.02
28 0.27 0.02 0.04 0.01 0.15
29 0.44 0.02 0.02 0.38 0.15
30 0.65 0.02 0.01 0.54 0.52
31 0.85 0.02 0.02 0.47 0.28
32 0.61 0.03 0.02 0.57 0.42
33 0.56 0.02 0.02 0.98 0.67
34 0.76 0.02 0.02 0.54 0.59
35 0.86 0.01 0.01 0.54 1
36 0.78 0.01 0.01 0.44 1
37 1 0.01 0.01 0.01 1
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Table 4: Sparseness analysis with five factors and no
mispricing
The table reports the performance of the sparse RRR and IPCA
model, which includes five factors and mispricing term (i.e. Γα =
0). The baseline models include all characteristics and extract five
factors, while the sparse models, described in Section 5, are esti-
mated using the SOFAR algorithm.

RRR IPCA
Baseline Sparse Baseline Sparse

Maximal Sharpe ratio 4.607 4.019 4.328 3.518
∆SR

RRRbase
p-value - 0.000 0.077 0.000

Tan. port. excess return 0.230 0.0944 0.225 0.267
Tan. port. volatility 0.050 0.0235 0.052 0.076
R2

GLS 0.209 0.187 0.20 0.192
Best model: BIC x

RRR IPCA
Corr(Sparse,Baseline) Corr(Sparse,Baseline)

Factor 1 0.97 0.78
Factor 2 0.50 0.95
Factor 3 0.51 0.60
Factor 4 0.63 0.89
Factor 5 0.72 0.82
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Table 5: Validation Results
The table reports the out-of-sample performance of the RRR
and IPCA model with five time-varying factors and no mis-
pricing term (i.e. Γα = 0) under the cross-sectional and
time-series designs described in section 7.5. “p-value of
∆SR

RRR−IPCA” is, for each design, the p-value under the null
that the difference between the maximal Sharpe ratio of the
RRR and IPCA model is reported as the same. The third
and the forth row report the average excess returns (Sharpe
ratio numerators) and the volatilities (Sharpe ratio denomi-
nators) of the tangent portfolios generated by the discussed
factors. The last row reports the GLS R2 described in section
6.2 computed using the time series of out-of-sample factors.

Cross-sectional Time-series
RRR IPCA RRR IPCA

Maximal Sharpe ratio 4.517 4.224 4.077 3.156
p-value of ∆SR

RRR−IPCA 0.000 - 0.000 -
Tan. port. excess return 0.232 0.229 0.199 0.142
Tan. port. volatility 0.052 0.054 0.049 0.053
R2

GLS 0.236 0.228 0.202 0.190
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Appendix

A OLS Hedged Factors

In this section we report the steps, worked out in Kozak and Nagel (2023), to compute a version of the

Fama and French (2020) OLS factors residualized with respect to the zero-expected return hedge portfolios.

The implied variance of rt+1 in model (12) can be decomposed into two distinct components: priced risk

and unpriced risk:

Σt = ZtΦtZ
′
t + UtΩtU

′
t and U ′

tZt = 0 (39)

with conformable matrices Φt and Ωt.

We define Ht, the Nt ×K matrix, as the weights for the K OLS hedged factors at time t. We expect

that H ′
tXt has full rank to ensure that no information about expected returns is lost. Additionally, we

impose U ′
tHt = 0 to guarantee that the factors do not load on unpriced risk. Although Ut is not directly

observable, it still can partially be determined from moments of Rt and Zt. Kozak and Nagel (2023) propose

an advanced approach based on Daniel et al. (2020)’s method for case U ′
tZt ̸= 0, which is outlined as follow:

The first step is to construct a hedge stock portfolio that has precisely zero expected return. This is

achieved by regressing conditional covariances of individual stocks with factors, Cov(rt+1, (Z
′
tZt)

−1Z ′
trt+1) =

ΣtZt(Z
′
tZt)

−1, on Zt, and then using the residuals,

Wh,t = P̄tΣtZt(Z
′
tZt)

−1, (40)

where P̄t = I − Zt(Z
′
tZt)

−1Z ′
t, as portfolio weights for the hedge portfolio.

The second step is to calculate the covariances between stocks’ returns and the hedge portfolio returns so

that we can remove the component that is correlated with the unpriced risk Ut from factor portfolio weights

in the next step:

V̂t = ΣtWh,t. (41)

The third step is to regress the factor portfolio weights Zt(Z
′
tZt)

−1 on V̂t to obtain residual factor

portfolio weights Ĥt that have been purged of unpriced risk exposure

Ĥt = Zt(Z
′
tZt)

−1 − V̂t(V̂
′
t V̂t)

−1V̂ ′
tZt(Z

′
tZt)

−1. (42)

Finally the OLS hedged factors are obtained as β̃h
t+1 = Ĥ ′

trt+1.
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A.1 Multiple rounds of hedging

Kozak and Nagel (2023) further show that additional improvements on the OLS factors can be achieved

by engaging in multiple rounds of hedging. For example, the n-th hedging round is achieved by regressing

stocks’ conditional covariances with hedged factors from the n− 1 round, i.e. Γ−1
t Ĥn−1

t on Zt and collecting

the residuals RtΓ
−1
t Ĥn−1

t . Then, calculate stocks’ covariances with these residuals, getting V̂n,t. Finally,

obtain the hedged portfolio weighs after n rounds of hedging Ĥn
t as the residuals from regressing Zt(Z

′
tZt)

−1

on V̂t through V̂n,t.

B Expressions Related to Result 1

The GLS criterion S(θ) is defined in equation (25). Let s = L+K(T +L) be the dimension of the vector

of RRR parameters θ defined in Section 4. The second derivative matrix Bθ with its elements is:

Bθ
s×s

=
∂2S(θ)

∂θ(∂θ)′
=

1

T


∂2S(θ)

∂Γα(∂Γα)′
∂2S(θ)

∂Γα(∂f)′
∂2S(θ)

∂Γα(∂vec(Γ′
β))

′(
∂2S(θ)

∂Γα(∂f)′

)′
∂2S(θ)
∂f(∂f)′

(
∂2S(θ)

∂vec(Γ′
β)(∂f)

′

)′(
∂2S(θ)

∂Γα(∂vec(Γ′
β))

′

)′
∂2S(θ)

∂vec(Γ′
β)(∂f)

′
∂2S(θ)

∂vec(Γ′
β)(∂vec(Γ

′
β))

′


where

∂2S(θ)

∂Γα(∂Γα)′
=

∑
t

Z ′
tΓt+1Zt

L×L

,

∂2S(θ)

∂Γα(∂f)′
= [(Z ′

1Γ2Z1)Γβ , ..., (Z
′
TΓT+1ZT )Γβ ]

L×TK

∂2S(θ)

∂Γα(∂vec(Γ′
β))

′ =
∑
t

(Z ′
tΓt+1Zt ⊗ f ′

t+1)

L×KL

,

∂2S(θ)

∂f(∂f)′
= Diag

(
Γ′
β(Z

′
1Γ2Z1)Γβ , · · · ,Γ′

β(Z
′
TΓT+1ZT )Γβ

)
TK×TK

∂2S(θ)

∂vec(Γ′
β)(∂f)

′ = [−(Z ′
tΓt+1Zt)(βt+1 − Γα − Γβft+1)⊗ IK ] + (Z ′

tΓt+1Zt ⊗ ft+1)Γβ

∂2S(θ)

∂vec(Γ′
β)(∂vec(Γ

′
β))

′ =
∑
t

(
Z ′
tΓt+1Zt ⊗ ft+1f

′
t+1

)
KL×KL

.

Hθ = {∂hj(θ)/∂θi} is a s×K(K+1) matrix containing the partial derivatives of h(θ) = 0, theK(K+1)×1

vector of normalization conditions described in (26). The first K components of h(θ) are given by Γ′
βΓα,

the next K(K−1)
2 components are of the form F ′

iFj , i ≤ j where Fi denotes the i-th column of the matrix F ′.

2
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The remaining K(K+1)
2 are of the form Γ

(i)
β

′
Γ
(j)
β − δij , i ≤ j where Γ

(j)
β denotes the j-th column of Γβ and

δij = 1 for i = j and 0 otherwise.

C Sparseness Algorithm Based on SOFAR

The discussion in Section 5 leads to the following algorithm:

Input: Y
L×T

= W 1/2(β̃GLS ′
− Γ̂α1

′
T ) and X

L×L
= W 1/2

Output: Γβ , F and Λ

Step 1: construct an initial estimator C̃ with λ0 ≥ 0 from

C̃ = argmin
C

{
1
2T ∥W

1/2(β̃GLS ′
− Γ̂α1

′
T )−W 1/2C∥2F + λ0∥C∥1

}

Get U0, D0 and V0 from the singular value decomposition (SVD) of C = U0D0V0.

Step 2: Use the augmented Lagrangian method (ALM) coupled with block coordinate descent (BCD)

to search the solution of the following problem

(Θ̂, Ω̂) =argmin
Θ,Ω

{
1
2T ∥W

1/2(β̃GLS ′
− Γ̂α1

′
T )−W 1/2UDV ′∥2F + δ∥UD∥1

}
s.t.U ′U = I, V ′V = I, UD = A, V D = B

where Θ = (D,U, V ) and Ω = (A,B).

Get the converge solution D∗, U∗ and V ∗.

Step 3: Construct the solution for our problem. Γβ = U , F = DV ′ and Λ = D2.

In our case, we choose to make only Γβ sparse while keeping the factor time series non-sparse. As a

result, we add only one penalty term to our problem, which is a special case of the SOFAR algorithm. The

ALM-BCD algorithm, which we used in step 2, is described in detail in Table 1 of Uematsu et al. (2019).
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D AIC Criterion

In our empirical studies, we compute AIC metric as

AIC = 2s− 2lnL(θ) (43)

where the log-likelihood lnL(θ) ≡
∑T

t lnf(rt+1|Zt; θ) = − 1
2

î
ln(2π)

∑T
t Nt +

∑T
t ln|Γ−1

t |
ó
− TS(θ), S(θ) is

defined in equation (25) and s is the total number of estimated parameters. Refer to footnote 18 in the main

text for further detail on s.

In this robustness check, we use the AIC metric to select the optimal industry structure and evaluate

the goodness of fit of our analyzed models. Figure 9(left) confirms that the GLS model outperforms the OLS

model, as the former exhibits a lower AIC. Moreover, the AIC is decreasing in the number of industries,

indicating that GLS factors with larger industry block structure performs better. These results confirm that

the optimal model is the one based on the 17-industry structure, which is consistent with the findings based

on BIC, R2
GLS and maximal Sharpe ratios as presented in Figure 3.

In Figure 9(right), we present the AICs for models with different number of factors. As consistently

observed, the RRR model outperforms the IPCA model. Additionally, we find that models without the

mispricing term perform better than models with one. The AIC results indicate that the optimal number of

factors is 18, which confirms that the importance of a parsimonious model.

Figure 9: Robustness Check Based on AIC Criterion
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