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I. Introduction

Cross-sectional asset pricing research has linked stocks’ expected returns to a large set of firm

characteristics. To summarize these cross-sectional pricing patterns in a reduced-form pricing

model, researchers often construct stochastic discount factor (SDF) proxies with multiple

characteristics-based factors. Individual assets’ weights in these factor portfolios are functions

of stock characteristics. Researchers use a variety of different heuristic approaches to specify

these weights. For example, Fama and French (1993) sort stocks by characteristics and then

form portfolios by applying quintile cutoffs (sorted factors); Kozak, Nagel, and Santosh (2020)

construct portfolios with weights proportional to stocks’ centered univariate cross-sectional

rank for each characteristic (univariate factors); Fama and French (2020) use the slopes

of monthly cross-sectional OLS regressions of returns on characteristics as factor portfolio

returns (OLS factors).1

There is, however, only one unique SDF—or, equivalently, one mean-variance efficient

portfolio return—that is spanned by returns of the individual assets (Hansen and Jagannathan

1991). Under which conditions do these different heuristic methods yield this SDF? Put

differently, under which conditions is the investment opportunity set not deteriorating if one

aggregates individual assets to these factor portfolios? Somewhat surprisingly, the answer to

this fundamental question is not available in the literature.

Clearly, some special conditions must be met because the weights of individual assets in

the mean-variance efficient portfolio weights depend on the return covariance matrix, but

none of these heuristic methods use any information from the covariance matrix in factor

construction. Our first objective in this paper is to work out what these conditions are.

We set estimation issues aside at first and work with population moments. We assume

that conditional expected returns of N individual stocks are linear in J ≤ N firm charac-

1. More precisely, Fama and French (2020) use a hybrid approach where individual stocks are first sorted
into a relatively large number of characteristics-based portfolios and the value-weighted returns and charac-
teristics of these portfolios are then the input for the cross-sectional OLS regressions.
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teristics collected in the N × J characteristics matrix Xt. At this conceptual level, this

assumption is very general since the set of characteristics could also contain nonlinear func-

tions of some underlying basic characteristics. For instance, sorted factors can be subsumed

by univariate factors if characteristics are specified as step functions. This linearity assump-

tion only acquires substantive empirical content once a researcher has fixed a specific set of

characteristics that she works with.

As a starting point, we show that the SDF that prices all individual assets can be ex-

pressed as a multifactor SDF spanned by J factors that are the slopes of cross-sectional

GLS regressions of returns on lagged firm characteristics (GLS factors). The inverse of the

conditional covariance matrix of returns serves as the GLS weighting matrix. The matrix of

individual assets’ conditional betas on the GLS factors is then exactly equal to Xt.
2

In practice, construction of these GLS factors would be difficult because it requires esti-

mating and inverting a large conditional covariance matrix. For this reason, it is important

to know whether heuristic approaches that bypass this inversion problem can deliver factors

that span the SDF. Sorted factors, univariate factors, and OLS factors are all simply weight-

ing stocks by columns of Xt or a nonsingular rotation thereof. We show that these factors

span the SDF if and only if the conditional covariance matrix Σt of individual asset returns

takes the specific form

Σt = XtΨtX
′
t +U tΩtU

′
t, X ′tU t = 0. (1)

This means that there must be a clean separation among the sources of systematic risk such

that loadings on up to J systematic factors are perfectly spanned by Xt while loadings on

the remaining ones are orthogonal to Xt. When (1) holds, individual assets’ betas on OLS

factors are exactly equal to Xt, i.e., covariances are equal to characteristics. Fama and

French (2020) argue that the OLS factors can be used as asset pricing factors in time-series

2. The GLS factors are similar to the characteristics-efficient portfolios of Daniel, Mota, Rottke, and Santos
(2020), but in our analysis we allow for time-varying conditional moments.
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regressions with conditional betas set equal to Xt, but our result shows that this is true if

and only if condition (1) is satisfied.

Condition (1) is more likely to hold approximately when Xt includes a large, compre-

hensive set of characteristics. In this case, important sources of stock return covariance can

be absorbed in the first term of Σt in (1), which leaves U t and violations of X ′tU t = 0

quantitatively unimportant. Additional characteristics can help even if they are unrelated to

expected returns as long as they help to capture major sources of stock return covariances.

But if the number of characteristics is small—as in popular low-dimensional factor models

with only four or five characteristics-based factors—there is little reason to think that this

small number of characteristics should be sufficient to span loadings on all major sources of

covariance.

Existing empirical results are suggestive that low-dimensional factor models with heuristic

factors do not satisfy condition (1). For example, Gerakos and Linnainmaa (2018) find

that the HML value factor is contaminated with unpriced components; Back, Kapadia, and

Ostdiek (2015) find that OLS factors have alpha with respect to the standard sorted factors

of Hou, Xue, and Zhang (2015) and Fama and French (2015); Grinblatt and Saxena (2018)

find that sorted factors do not price the basis portfolios from which they were constructed;

Chib, Lin, Pukthuanthong, and Zeng (2021) find that the method of factor construction

affects asset pricing performance. All of these findings indicate that the low-dimensional

factor models do not span the SDF.

Motivated by these findings, researchers have developed heuristic methods to remove un-

priced components from heuristic factors. Daniel, Mota, Rottke, and Santos (2020) (DMRS)

propose a hedging approach that is meant to remove unpriced risks from the original factors.

They construct hedge portfolios that have positive loadings on the original factors but zero

exposure to the underlying characteristics that determine expected returns. Residualizing

the original factors with respect to the hedge portfolio returns removes unpriced risks. How-

ever, it is not clear under which conditions this heuristic approach actually yields a better
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approximation of the SDF. Our second objective therefore is to understand the conditions

under which this hedging approach can be used to recover factors that span the SDF.

With Ht representing the DMRS hedged factor portfolio weights, or a nonsingular rota-

tion thereof, we show that the hedged factors span the SDF if the covariance matrix has the

structure in (1), but with the requirement X ′tU t replaced with the requirement that there

exists a decomposition such that

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, X ′tEt = 0, (2)

where V t is an N × J matrix. This is a weaker condition than (1) because here columns of

Xt can be correlated with columns of U t, as long as this correlation comes only through the

J columns of V t. Again, this condition is more likely to hold when researchers consider a

large, comprehensive set of characteristics.

While DMRS consider only one round of hedging, there is no reason to stop after one

round. Iteration on this approach, by hedging once more the already-hedged factor portfolios

can yield further improvements. We show that with two rounds of hedging the resulting

factors span the SDF if a condition like (2) holds, but in this case V t can have 2J instead

of J columns, i.e., there can be even more sources of correlation between the columns of Xt

and U t than under condition (2).

The approaches we discussed so far construct J factors to capture the pricing informa-

tion of J characteristics. Dimension-reduction methods aim to span the SDF with a smaller

number of K < J factors while again avoiding the need to invert an estimate of Σt. Different

approaches for dimension reduction exist in the literature, but it is not clear what the nec-

essary conditions are for the factors constructed with these methods to span the SDF. Our

third objective is therefore to establish these conditions.

We show that if and only if the conditional covariance matrix has a structure like in (1),

but with Xt replaced by lower-dimensional K ≤ J linear combinations of characteristics

collected in XtQt, then portfolios with weights equal to XtQt, or a non-singular transfor-
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mation thereof, span the SDF. We further show that under these conditions, two prominent

methods of dimension reduction, the instrumented principal components method (IPCA) of

Kelly, Pruitt, and Su (2019) and the projected PCA method (PPCA) of Kim, Korajczyk,

and Neuhierl (2019), which both assume that loadings on latent risk factors are linear in

characteristics but use different identification assumptions, can be implemented using simple

PCA on OLS portfolios or univariate portfolios constructed using orthonormal characteristics,

respectively.

Finally, we turn to empirical implementation. Our theoretical results are all stated in

terms of population moments. However, we find that our theoretical results also characterize

well the properties of factor models with empirically estimated moments. In the empiri-

cal analysis, we focus on the properties of OLS factor models constructed using the stock

characteristics from Kozak, Nagel, and Santosh (2020). As one would expect based on our

theoretical results, OLS factors generally do not span the SDF that prices individual stocks.

We infer this from the fact that hedging the OLS factors using the DMRS method produces

substantial improvements of the MVE portfolio’s (maximum) Sharpe ratio attainable by the

factors. As suggested by our theoretical analysis, iterating the hedging procedures produces

further substantial gains in the maximum Sharpe ratio. Furthermore, while these maximum

Sharpe ratio improvements are large for small-scale factor models that use only a few char-

acteristics, they vanish when we use a large number of characteristics to construct the OLS

factors. This is in line with our conclusion from the theoretical analysis that condition (1)

is more likely to hold, and therefore OLS factors more likely to span the SDF that prices

individual stocks, when the econometrician employs a large number of characteristics.
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II. Conditions for characteristics-based portfolios to

span the mean-variance frontier

We consider a cross-section of N assets with an N × 1 vector of excess returns zt+1. Each

asset features J characteristics that are observable to the econometrician, collected in the

(time-varying) N × J matrix Xt where J ≤ N , rank(Xt) = J , and the first column of Xt

is a vector of ones. In a number of places in our analysis we will use the residual maker

matrix Rt = I−Xt (X ′tXt)
−1
X ′t that generates the residuals in a projection on Xt. Unless

otherwise noted, we use the notation µy,t = Et[yt+1], Σy,t = vart(yt+1) for the conditional

moments of a random vector yt+1, Σxy,t as notation for the conditional covariance matrix of

two random vectors xt+1 and yt+1, and IK for a K ×K identity matrix.

In what follows, all time-t conditional moments are conditioned on Xt, and we denote

Σt = var(zt+1|Xt), µt = E[zt+1|Xt], (3)

and we assume that Σt is positive definite. That these conditional moments are conditioned

on the characteristics observable to the econometrician is important. The set of characteris-

tics observable to investors could be larger or smaller than what is contained in Xt, without

consequences for our results, as long as the law of one price holds conditional on Xt.
3 There-

fore, it is possible that conditional on investors’ information set, moments of excess returns

could vary more or less than conditional on the econometrician’s information. Only sources

of variation linked to Xt matter in our analysis.

We assume throughout that the law of one price holds and hence an SDF exists. Condi-

tional on the econometrician’s information, the maximum squared conditional Sharpe ratio

that can be obtained from the N individual assets then is finite and given by µ′tΣ
−1
t µt. The

3. As an example that would violate this requirement, the law of one price would fail if the econometrician
included elements of zt+1 in Xt. Conditional on this look-ahead information, arbitrage opportunities would
seemingly exist.
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SDF that uses this maximum squared conditional Sharpe ratio portfolio as risk factor,

Mt+1 = 1− b′t (zt+1 − µt) , bt = Σ−1t µt, (4)

prices the N assets conditionally, i.e., E[Mt+1zt+1|Xt] = 0. This is the unique SDF in the

span of excess returns. We refer to it from now on simply as the SDF.

Our analysis focuses on characteristics-based factors. These factors are generally con-

structed with an N × J portfolio weight matrix W t, where the weights are functions of the

characteristics Xt, and possibly also of Σt. Using these weights, one can form J factor

portfolios as

f t+1 = W ′
tzt+1, (5)

with µf,t = W ′
tµt and Σf,t = W ′

tΣtW t. We assume that weights are such that Σf,t is

positive definite.

Our aim is to understand under which conditions different specifications of the weightsW t

produce factors that span the conditional mean-variance frontier. Spanning the conditional

mean-variance frontier is equivalent to the factors’ maximum squared conditional Sharpe

ratio,

µ′f,tΣ
−1
f,tµf,t = µ′tW t(W

′
tΣtW t)

−1W ′
tµt, (6)

attaining the maximum squared conditional Sharpe Ratio obtainable from the individual

assets. Our results below rely on the following lemma that provides conditions under which

this is true.

Lemma 1 The maximum squared conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1 is

equal to the maximum squared conditional Sharpe Ratio of the individual assets, i.e.,

µ′tΣ
−1
t µt = µ′tW t

(
W ′

tΣtW t

)−1
W ′

tµt (7)
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if and only if

µt = ΣtW tbt (8)

for some J × 1 vector bt.

Proof. Following the proof of Lu and Schmidt (2012) Theorem 3 (A, B), express the

difference of the left- and right-hand-sides of (7) as ∆ = µ′tΣ
− 1

2
t MΣ

− 1
2

t µt, where M = I−P
and P are residual and projection matrices, respectively, for a projection onto the columns

of Σ
1
2
t W t. ∆ = 0 if and only if Σ

− 1
2

t µt is in the column space of Σ
1
2
t W t, that is, Σ

− 1
2

t µt =

Σ
1
2
t W tbt for some bt, which is equivalent to (8).

If the factors span the conditional mean-variance frontier, then they span the SDF that

prices the individual assets:

Corollary 1 Lemma 1 implies that if and only if equation (8) holds, an SDF can be repre-

sented in terms of the J factors:

Mt+1 = 1− b′t
(
f t+1 − µf,t

)
. (9)

This SDF perfectly prices the excess returns zt+1, that is, E [Mt+1zt+1|Xt] = 0. This SDF

representation is equivalent to a conditional beta-pricing representation

µt = βtµf,t, (10)

where βt = Σzf,tΣ
−1
f,t .

Equipped with this result, we can now explore under which assumptions about µt and

Σt various heuristic methods of factor construction that have appeared in the literature yield

factors that span the SDF.

Our baseline assumption about expected returns is motivated by a large body of work

that has documented cross-sectional relationships between expected return and firm charac-

teristics:
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Assumption 1 (Linearity of expected returns in characteristics)

µt = Xtφ (11)

with some J × 1 vector φ.

At a conceptual level, the assumption that µt is linear in Xt is without loss of generality

as Xt could also include nonlinear functions of characteristics. Similarly, portfolio sorting

approaches that allow expected returns to differ across but not within bins defined by charac-

teristics can be accommodated in Assumption 1 by letting Xt be a matrix of bin membership

indicators. That φ is a constant parameter vector is not restrictive either, because one could

include nonlinear interactions of cross-sectional firm characteristics with time-series predictors

to capture any time-variation in expected returns. In practice, though, once a researcher has

chosen a specific set of characteristics to include in Xt, Assumption 1 becomes a substantive

assumption that restricts µt. Later in the paper, we discuss alternative assumptions.

Comparing Assumption 1 and equation (8), we see that ΣtW t collapses to Xt only in

special cases when certain conditions are satisfied for W t, or certain restrictions on Σt hold.

We now explore these conditions.

II.A. The unique SDF in the span of excess returns: GLS factors and rotations thereof

As a benchmark for understanding when and why heuristic factor models span or do not span

the SDF, we first show that the SDF in (9) has a J-factor representation under Assumption

1:

Proposition 1 Assumption 1 is equivalent to the statement that an SDF given by (9) with

characteristics-based factors

f t+1 = S′tX
′
tΣ
−1
t zt+1, (12)

and prices of risk

bt = S−1t φ, (13)
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where St is any nonsingular J × J rotation matrix, perfectly prices the excess returns zt+1,

that is, E [Mt+1zt+1|Xt] = 0.

Proof. Rewrite (11) as µt = ΣtΣ
−1
t XtStS

−1
t φt = ΣtW tbt, whereW t = Σ−1t XtSt. Lemma

1 now applies.

Thus, when there is a linear relationship between J characteristics and conditional ex-

pected return, the SDF is spanned by J characteristics-based factors that exactly explains

these conditional expected returns with zero pricing errors. Proposition 1 therefore high-

lights that there is no economic difference between a model that specifies expected returns

directly as linear function of characteristics as in Assumption 1 and a characteristics-based

factor pricing model. One can always be mapped perfectly into the other one, with equivalent

pricing implications. Therefore, a horse race between direct linear prediction of zt+1 by Xt

and a factor pricing model, e.g., as in as in Daniel and Titman (1997) and Davis, Fama, and

French (2000) as well as many other papers, does not have economic content. If factors are

constructed as in Proposition 1, there is no difference in expected returns implied by direct

linear prediction and the factor model. If factors are constructed in a heuristic way that

does not exactly follow the prescription of Proposition 1, then there can be a difference, but

this just reflects the misspecification of the heuristic factors. The difference does not have

economic content (it does not discriminate between “rational” and “behavioral” asset pricing

theories, for example).

Empirical asset pricing researchers often like to work with beta-pricing specifications

and, in particular, with beta-pricing specifications that can be conditioned down to deliver

predictions for unconditional expected returns without elaborate estimation of time-varying

conditional moments. The following example present such a case.

Example 1 Suppose St =
(
X ′tΣ

−1
t Xt

)−1
. We then obtain an SDF with factors given by

GLS cross-sectional regression slopes, f t+1 =
(
X ′tΣ

−1
t Xt

)−1
X ′tΣ

−1
t zt+1. Factor risk prices

are time varying, bt =
(
X ′tΣ

−1
t Xt

)
φ. Factor means are constant, µf,t = φ. Factor betas

are equal to characteristics, βt = Xt.
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The GLS slope factors in this example are the GLS counterpart to the OLS cross-sectional

slope factors in Fama (1976) and Fama and French (2020). The factors in Example 1 are also

similar to the “characteristic-efficient portfolios” in Daniel, Mota, Rottke, and Santos (2020),

albeit here with time-varying Xt and a conditional moments of excess returns. We will show

later in Section IV that keeping track of time-variation in Xt and conditional moments is

important in empirical implementation of these factor models.

Which rotation matrix St to pick is a matter of convenience. The next example is one in

which factor covariances instead of factor betas are equal to Xt:

Example 2 Suppose St = IJ . Factors are f t+1 = X ′tΣ
−1
t zt+1. Factor risk prices are

constant, bt = φ. Factor means are time-varying, µf,t =
(
X ′tΣ

−1
t Xt

)
φ. Covariances of

returns and factors are equal to characteristics, Σzf,t = Xt.

Practical implementation of the SDF in Proposition 1 is of course difficult since it involves

the inversion of a large N ×N conditional covariance matrix. Heuristic approaches to factor

construction exist that avoid this inversion problem. We now want to find conditions that

need to hold for these heuristic approaches to succeed in spanning the SDF.

II.B. Heuristic factor construction: OLS factors and rotations thereof

Many heuristic methods construct factors by taking long positions in stocks with high values

of a characteristic and short positions in stocks with low values of a characteristic, with the

portfolio weight matrix and factors then taking the form

W t = XtSt, f t+1 = W ′
tzt+1, (14)

for some nonsingular matrix St. For example, St = I yields a univariate characteristics port-

folio were weights are proportional to characteristics as, e.g., in Kozak, Nagel, and Santosh

(2020). With characteristics defined as dummy variables for characteristics bins, portfolio

sorts can also be represented in this way. Another example are cross-sectional regression slope
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factors. Fama and French (2020) use the insight of Fama (1976) that OLS cross-sectional

regression slopes are themselves portfolio returns. This is the case St = (X ′tXt)
−1.

Fama and French (2020) conjecture that the OLS factors yield an “asset pricing model

that can be used in time-series applications.” In other words, they conjecture that for N

assets with OLS factor betas βt, the pricing relation µt = βtµf,t holds. However, such a

pricing relationship does not generally hold for OLS factors. As we show now, this is true

only if the covariance matrix takes a special form.

Proposition 2 Suppose Assumption 1 holds and let W t = XtSt. Then, for any nonsingular

J×J matrix St, the maximum squared conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1

is equal to the maximum squared conditional Sharpe Ratio of the individual assets if and only

if there exist conformable matrices Ψt, Ωt, and a matrix U t for which

U ′tXt = 0, (15)

such that

Σt = XtΨtX
′
t +U tΩtU

′
t. (16)

Proof. Lu and Schmidt (2012) Theorem 1 (B, F’) implies that (16) is equivalent to the
statement that there exists a nonsingularBt such that ΣtXt = XtBt. Rewriting Assumption
1 as µt = XtBtB

−1
t φ, we see that it is then equivalent to µt = ΣtXtStS

−1
t B

−1
t φ = ΣtW tbt,

where bt = S−1t B
−1
t φ. Thus, condition (8) in Lemma 1 is satisfied, which means that Lemma

1 applies.

Without the restriction (15), the decomposition in (16) would always exist. For instance,

for any nonsingular symmetric Ψt, we could obtain U tΩtU
′
t from an eigendecomposition of

Σt −XtΨtX
′
t, where U t then contains the eigenvectors associated with the N − J nonzero

eigenvalues in the diagonal matrix Ωt.

How can researchers wishing to use OLS factors, or rotations thereof, ensure that the

condition U ′tXt = 0 in (15) holds, at least approximately? Including many characteristics

in Xt should help. To see this, we can use the result in Lu and Schmidt (2012) that the
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conditions in (15) and (16) are equivalent to J eigenvectors of Σt being spanned by Xt. The

matrix U t then contains linear combinations of the eigenvectors not spanned by Xt.
4 With

only a few characteristics included in Xt, it is unlikely that the J columns of Xt exactly

span J eigenvectors. Effectively, for each eigenvector, this is like asking whether a regression

of the N elements of the eigenvector on the J variables in Xt has perfect fit. Clearly, the

more characteristics we add, the better the fit. In this sense, it is more likely that U ′tXt = 0

holds if Xt contains more characteristics.

Moreover, with a larger number of characteristics it is more likely that Xt spans very

well the relatively small number of eigenvectors associated with large eigenvalues, i.e., the

major sources of stock return covariance. In this case, even Xt does not span J eigenvectors

perfectly, spanning the few important ones very well may render the violations of U ′tXt = 0

quantitatively unimportant. OLS factors, or rotations thereof, may then span the SDF

approximately. We investigate this further in our empirical analysis in Section V.

Importantly, for additional characteristics to be helpful in ensuring that U ′tXt = 0 holds

approximately, these additional characteristics do not necessarily need to contribute to vari-

ation in expected returns. If they help to span major sources of covariances, they will help

OLS factors, or rotations thereof, to span the SDF, even without contribution to variation in

expected returns.

The choice of rotation matrix St is again just one of convenience. Our first example shows

the choice that yields OLS cross-sectional regression slope factors:

Example 3 Suppose St = (X ′tXt)
−1

and that (16) holds. We then obtain an SDF with

factors given by OLS cross-sectional regression slopes, f t+1 = (X ′tXt)
−1
X ′tzt+1. Prices of

4. If Qt and Λt are the matrix of eigenvectors and diagonal matrix of eigenvalues of Σt, respectively, and
Qt = (XtBt : U t) where the columns of XtBt, with nonsingular Bt, are the J eigenvectors spanned by Xt

and U t are the eigenvectors not spanned by Xt, then we have

Σt = XtBtΛ1,tB
′
tX
′
t + U tΛ2,tU

′
t (17)

which maps into (16) with BtΛ1,tB
′
t = Ψt and Λ2,t = Ωt. Moreover, since eigenvectors are orthogonal,

B′tX
′
tU t = 0 and hence U ′tXt = 0.
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risk are bt = Ψ−1t Xtφ and factor risk premia are constant, µf,t = φ. Factor betas are equal

to characteristics, βt = Xt.

A different choice of St produces univariate factors where weights in each characteristics

portfolio depend only on one characteristic because the columns of Xt serve as weights:

Example 4 Suppose St = IJ and that (16) holds. We then obtain an SDF with factors given

by simple univariate portfolio sorts, f t+1 = X ′tzt+1. Factor risk prices, bt = (X ′tXt)
−1

Ψ−1t φ

and factor means, µf,t = X ′tXtφ, are time-varying. Factor betas are βt = Xt (X ′tXt)
−1

.

The special case in the latter example is particularly convenient for illustrating the mean-

ing of U ′tXt = 0 in (15). For the factor model to price assets perfectly, factor covariances

must span µt = Xtφ. This is always the case for the factors in Example 2 where factor

weights are Σ−1t Xt and hence individual assets’ factor covariances are ΣtΣ
−1
t Xt = Xt. In

contrast, in the case of Example 4, individual assets’ covariances with factor portfolios with

factor weights Xt are

ΣtXt = XtΨtX
′
tXt +U tΩtU

′
tXt. (18)

If U ′tXt = 0, then the second component is zero and the expression hence simplifies to a

term Xt multiplied by a nonsingular matrix. Factor covariances therefore span µt. But

if U ′tXt 6= 0 then the second component does not disappear. As a consequence, the factor

covariances are contaminated by components that are not linear inXt, and hence are unpriced

as they do not earn expected return. Thus, when U ′tXt 6= 0, the factors with weights Xt

incorporate unpriced risks, while factors that span the SDF capture only priced risks.

II.C. Hedged heuristic factors

If condition U ′tXt = 0 in Proposition 2 does not hold, any factors with weights that are

a nonsingular transformation of Xt load on unpriced risks, i.e., risk exposure that is not

compensated with higher excess returns. This prevents the factors from reaching the mean-

variance frontier.
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Using the GLS factors, or rotations thereof, following Proposition 1 would avoid contam-

ination of factors with unpriced risks, but their construction requires inversion of the large

covariance matrix Σt (that would have to be estimated in practice). For this reason, it is

useful to ask whether there exist an alternative factor specifications that use some informa-

tion about covariances to find characteristics-based factors that span the SDF, but without

requiring estimation and inversion of the whole covariance matrix Σt. These factors will be

hedged factors because they hedge unpriced exposures of the original factors.

We first show a result that will be helpful for checking whether a candidate hedged factor

model with factor portfolio weight matrix Ht spans the SDF.

Lemma 2 Suppose Assumption 1 holds and that Ht is some matrix such that H ′tXt has full

column rank and H ′tΣtHt is positive definite. Then the maximum squared conditional Sharpe

ratio of the factors f t+1 = H ′tzt+1 is equal to the maximum conditional squared Sharpe Ratio

of the individual assets if and only if there exist a nonsingular matrix Ψt, and some matrices

Ωt and U t for which

U ′tHt = 0, (19)

such that

Σt = XtΨtX
′
t +U tΩtU

′
t. (20)

Proof. Lu and Schmidt (2012) Theorem 3 (B, F’) implies that (20) is equivalent to the
statement that there exists some Bt such that Xt = ΣtHtBt. Rewriting Assumption 1 as
µt = ΣtHtBtφ = ΣtW tbt, where bt = Btφ. Thus, condition (8) is satisfied, which means
that Lemma 1 applies.

There are two key points to note. First, the requirement that H ′tXt has full column

rank ensures that no information about expected returns is lost when individual assets are

aggregated with Ht as portfolio weight matrix. Second, the requirement that U ′tHt = 0

ensures that the factors do not load on unpriced risk. When both conditions hold, a similar
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calculation as in (18) for the St = IJ case, but now with Ht as factor portfolio weights yields

ΣtHt = XtΨtX
′
tHt +U tΩtU

′
tHt = XtΨtX

′
tHt, (21)

which means that the individual assets’ covariances with these factors are perfectly linear in

Xt and so they span µt.

While Lemma 2 allows us to check whether candidate factors span the SDF, it does not

show how to construct factors that satisfy these requirements. Some conditions on U tΩtU
′
t

will have to hold for the construction to be possible without using the information from the

full Σt matrix. To see how additional structure on U tΩtU
′
t can help, suppose that J columns

of U t, collected in V t, are such that rank(V ′tXt) = J , while the remaining columns, collected

in Et, have E′tXt = 0 and E′tV t = 0. Moreover, suppose that Ωt is block-diagonal such

that

U tΩtU
′ = V tΓtV

′
t +EtΦtE

′
t. (22)

If we knew V t, we could then simply remove from characteristics-based factor weights W t =

XtSt the component that is correlated with U t by subtracting the projection of the weights

on V t,

Ht = XtSt − V t(V
′
tV t)

−1V ′tXtSt. (23)

It is easy to verify that H ′tU t = 0 and that H ′tXt has full column rank, i.e., the conditions

in Lemma 2 hold.

We cannot directly implement this approach as V t is not directly observable. But it can

be backed out from moments of zt and Xt. As we show, the factor hedging method of Daniel,

Mota, Rottke, and Santos (2020) (DMRS) is a feasible version of the approach above.

The goal of DMRS’s procedure is to hedge the unpriced risk in heuristic factors. The first

step is to construct hedging factors that go long in stocks with high loadings on the heuristic

factors and short in stocks with low loadings, while holding constant the characteristics-

exposure of the long and short legs of hedging factors, which ensures that they have zero
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expected return according to Assumption 1. DMRS do this by sorting stocks by loadings on

heuristic factors within characteristics-sorted portfolios. Here, we work with more general

characteristics-based factors with weights W t = XtSt and we construct a hedging portfolio

that has precisely zero expected return by regressing conditional covariances of individual

stocks with factors, i.e., ΣtW t, on Xt, and then using the residuals,

W h,t = RtΣtXtSt (24)

as portfolio weights for hedge portfolios.

The second step is to calculate stocks’ covariances with the hedge portfolio returns so

that we can modify stocks’ weights in the factor portfolios to remove unpriced risks:

V̂ t = ΣtW h,t = V tΓtV
′
tRtV tΓtV

′
tXtSt. (25)

The third step is to regress the factor portfolio weights W t = XtSt on V̂ t to obtain

residual factor portfolio weights that have been purged of unpriced risk exposure. Now note

that V̂ t in (25) is equal to V t post-multiplied by a nonsingular matrix. Hence regressing W t

on V̂ t produces the same residuals as regressing W t on V t. Therefore, the residuals 5

Ĥt = XtSt − V̂ t(V̂
′
tV̂ t)

−1V̂ ′tXtSt (28)

are the same as the residuals in (23) and hence Ĥt = Ht. In other words, the three steps

5. DMRS use a slightly different approach, but under the assumptions of Proposition 3 below, it yields the
same hedged factors. They purge the heuristic factors from unpriced risks that do not earn expected return
by regressing the J heuristic factors on the J hedge portfolio returns and using the J time series of residuals
as the hedged factors. The J × J matrix of regression coefficients in these regressions is

Kt = S′tX
′
tW h,t(W

′
h,tΣtW h,t)

−1S−1
t , (26)

and so the hedged factors have weights

Ĥt = XtSt −W h,tK
′
t. (27)

Substituting W h,t = V tAt, for some nonsingular matrix At, into this expression and Kt, it can be seen that
this last expression is equivalent to (23).
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above provide a way to construct the hedged portfolio weights in (23) from observable mo-

ments.

The following proposition states the result more formally.

Proposition 3 If the matrices U t and Ωt in (20) are such that there exists a decomposition

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, (29)

where V t is an N × J matrix of full column rank, V ′tXt is full rank, RtV t has full column

rank, E′tXt = 0, E′tV t = 0 and Γt is nonsingular, then the maximum squared conditional

Sharpe ratio of the hedged factors f t+1 = Ĥ ′tzt+1 with Ĥt as defined in (28) is equal to the

maximum squared conditional Sharpe Ratio of the individual assets.

Proof. Write V̂ t = V tAt where At = ΓtV
′
tRtV tΓtV

′
tXtSt. By assumption, RtV t has full

column rank J , hence V ′tRtV t = V ′tRtRtV t has full rank. Since pre- and post-multiplying
this expression by full rank matrices Γt and V ′tXtSt does not change rank, it follows that
At is full rank and hence nonsingular. Then, substituting V̂ t = V tAt, with At nonsingular
into (28) yields the expression for Ht in (23), i.e., Ĥt = Ht. Then U ′tĤt = 0 immediately
follows. Therefore, by Lemma 2, the result follows.

The rank requirements for several matrices in Proposition 3 have an economic interpre-

tation. That V ′tXt has full rank and RtV t has full column rank ensures that the hedging

portfolio weight vectors constructed via (25) and (28) are linearly independent. One could

relax these rank requirements by building in a dimension-reduction step that removes linear

dependencies in the construction of W h,t. However, for our purposes here, the benefits from

greater generality of this approach would not be worth the costs of additional expositional

complexity.

What do we gain from the hedging procedure? Comparing the conditions in Proposition

3 with (15) and (16) in Proposition 2, we can see that the conditions on the covariance

matrix that are required to hold for the hedged factors to span the SDF are weaker than

those required for the OLS factors (or nonsingular transformations thereof) to span the SDF.

While Proposition 2 requires the columns of Xt to be orthogonal to the columns of U t, the
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conditions in Proposition 3 allow violations of this orthogonality condition as long as there

are at most J linearly independent sources of such non-orthogonality as collected in the J

columns of the matrix V t.

II.D. Iterated hedging

When V t has more than J columns, then the (infeasible) hedged factor construction based

on the unobservable V t as in (23) still works as H ′tU t = 0 still holds and H ′tXt still has

full column rank, i.e., the conditions in Lemma 2 still hold. However, in this case the feasible

hedged factor weights Ĥt we construct in (28) are no longer equal to Ht. The reason is that

if we again construct V̂ t as in (25), the J columns of V̂ t now contain J linear combinations

of the 2J columns in V t. Projection on V̂ t therefore no longer produces the same residuals

as a projection on V t.

However, by iterating on the hedging procedure, we can solve this problem. Repeating

the hedging procedure by regressing individual stocks’ conditional covariances with hedged

factors, i.e., ΣtĤt, on Xt and collecting the residuals RtΣtĤt analogous to (24), but here

for hedged factors. Using these residuals as portfolio weights, and calculating the covariances

of individual stocks with these portfolio returns, we get, in analogy to (25),

V̂ 2,t = V tΓtV
′
tRtV tΓtV

′
tĤt, (30)

where the only difference to (25) is that XtSt was replaced by Ĥt. Note that V̂ 2,t is

comprised of J linear combinations of the 2J columns of V t.

Under conditions that we state more formally shortly, V̂ t and V̂ 2,t jointly span the same

column space as V t. Therefore, the residuals from the regression of XtSt on V t in (23)

are the same as those from a regression of XtSt on V̂ t and V̂ 2,t jointly. And the latter

regression can in turn be implemented in two steps, which results in an iterated hedging

procedure. By the Frisch-Waugh-Lovell theorem, the residuals of a regression of XtSt on V̂ t

and V̂ 2,t jointly are the same as the residuals of a regression of the first step residuals Ĥt
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from regressing XtSt on V̂ t in (28) on the residuals from regressing V̂ 2,t on V̂ t. Therefore,

we can construct the hedged portfolio weights as

Ĥ2,t = M tXtSt −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′2,tM tXtSt

= Ĥt −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′2,tM tĤt, (31)

where M t = I− V̂ t(V̂
′
tV̂ t)

−1V̂ ′t is the residual maker matrix from regression on V̂ t, and we

obtain Ĥ2,t = Ht.

The following proposition states this result formally. It looks similar to Proposition 3,

but note that V t now has 2J columns.

Proposition 4 If the matrices U t and Ωt in (20) are such that there exists a decomposition

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, (32)

where V t is an N × 2J matrix of full column rank, RtV t has full column rank, (V ′tXtSt :

V ′tĤt) has full rank, with Ĥt defined as in (28), E′tXt = 0, E′tV t = 0 and Γt is nonsingular,

then the maximum squared conditional Sharpe ratio of the hedged factors f t+1 = Ĥ ′2,tzt+1

with Ĥ2,t as defined in (31) is equal to the maximum squared Sharpe Ratio of the individual

assets.

Proof. We first show V̂ t and V̂ 2,t jointly span the same column space as V t. Note that we

can write (V̂ t : V̂ 2,t) = V tGtAt with At = (V ′tXtSt : V ′tĤt) where Gt = ΓtV
′
tRtV tΓt

is a full-rank 2J × 2J square matrix (RtV t has full column rank, so RtV tΓt has rank 2J .
Premultiplying RtV tΓt with its own transpose then results in a matrix that is also of rank
2J). Since At and Gt are full rank and hence invertible, we have V t = (V̂ t : V̂ 2,t)A

−1
t G

−1
t ,

i.e., V̂ t and V̂ 2,t jointly span the same column space as V t. Substituting this relation into

(23), we obtain the residuals of a regression of XtSt on (V̂ t : V̂ 2,t). By the Frisch-Waugh-
Lovell theorem, these residuals are in turn identical to those in the regression of M tXtSt on
M tV̂ 2,t in (31). Hence Ĥ2,t = Ht and so Ĥ ′2,tU t = 0. Therefore, by Lemma 2, the result
follows.

In analogy to the case with a single round of hedging that we discussed following Propo-

sition 3, the rank requirements for several matrices in Proposition 4 have an economic inter-
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pretation. The requirements that (V ′tXtSt : V ′tĤt) has full rank and RtV t has full column

rank are both needed to ensure that iterated hedging factor portfolio weight vectors Ĥ2,t are

linearly independent. One could again relax these rank requirements by building dimension-

reduction steps that removes linear dependencies in the iterated hedging procedure.

What do we gain from iterated hedging? Comparing the conditions in Proposition 4 with

those in Proposition 3, we can see that those in Proposition 4 are weaker. While the conditions

in Proposition 3 allow for J linearly independent sources of such non-orthogonality of Xt

and the columns of U t, the conditions in Proposition 4 allow for 2J linearly independent

sources of such non-orthogonality. In other words, iterated hedging can remove more sources

of unpriced risk contamination in characteristics-based factors than a single round of hedging

can.

There is no reason to necessarily stop after a second round of hedging. We do not show

formal results on this, but from the logic of the hedging iteration above, it should be clear that

further rounds of hedging would remove additional sources of unpriced risk contamination.

When working with population moments, this should further raise the maximum squared

conditional Sharpe Ratio of the hedged factors and hence get them closer to spanning the

SDF. Whether this is also true in a finite sample with estimated moments is not clear. At some

point, further hedging may be counterproductive and bring in estimation error contamination

rather than removing unpriced risk contamination. After all, doing many iterations of the

hedging procedure should be no different than constructing GLS factors by inverting an

estimate of the conditional covariance matrix (which is unlikely to work well when N is not

small relative to T ). We investigate this further in Section V.

II.E. Summary

When conditional expected returns are linear in firm characteristics, aggregation of individual

stocks into factor portfolios leads to a deterioration of the investment opportunity set, and

hence a failure of the factors to span the SDF, unless the factor weights incorporate the con-
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ditional covariance matrix as in GLS cross-sectional regression slope factors, or, alternatively,

the conditional covariance matrix satisfies certain conditions. Methods for hedging unpriced

risks in factors allow a partial relaxation of these conditions, especially if hedging procedures

are applied iteratively.

III. Dimensionality reduction

So far we have discussed factor models where the pricing information in J characteristics

is captured by J factors in the SDF. As we show now, under certain conditions on the

covariance matrix of individual stock returns, one can summarize the pricing information in

J characteristics-based factors in a smaller number of K < J factors. Of course, there is

always a single factor that prices the individual assets (which the linear combination of J

factors shown in Proposition 1), but without further assumptions, the construction of this

single factor requires inversion of a large conditional covariance matrix. The point of the

methods we discuss in this section is to achieve dimension reduction without having to invert

or eigen-decompose the large covariance matrix of individual asset returns.

We first present general conditions on covariance matrix that need to hold such that

dimension reduction is possible without loss of pricing information. Then we show that,

under these conditions, various approaches that have appeared in the literature are actually

equivalent or closely related.

Corollary 2 Suppose expected returns are given by

µt = XtQtφ, (33)

where Qt is a J×K matrix with K ≤ J , and let W t = XtQtSt. Then the maximum squared

conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1, for any nonsingular K ×K matrix

St, is equal to the maximum squared Sharpe Ratio of the individual assets if and only if there
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exist conformable matrices Λt, Ωt, and a matrix U t for which

U ′tXtQt = 0, (34)

such that

Σt = XtQtΛtQ
′
tX
′
t +U tΩtU

′
t. (35)

Proof. Directly follows from Proposition 2 by using XtQt in place of Xt.

We have achieved dimension reduction because there are now K factors in f , not J . This

is made possible by the fact that the factor component of the covariance matrix related to

Xt is now a lower-dimensional XtQt, which is N ×K, with K ≤ J , rather than the larger

N × J matrix Xt that we had in Proposition 2. And Λt is a K ×K matrix rather than the

J × J matrix Ψt in Proposition 2.

How can we find Qt to construct the factors f? As we show now, if we make a somewhat

stronger assumption than (34), namely that U ′tXt = 0 we can obtain Qt through principal

component analysis (PCA). Under this assumption, OLS factors, for instance, and rotations

thereof span the SDF. PCA applied to OLS factors can then extract Qt. More precisely, to

extract Qt as principal components, we need to add additional identification assumptions on

Qt and Λt. These assumptions pin down a specific rotation of Qt, but they do not affect the

pricing implications of the factor model. With different choices of identifying assumptions,

we then obtain conditional versions of two recently proposed methods of dimension-reduced

factor construction.

Example 5 (IPCA) Suppose U ′tXt = 0, Q′tQt = I and Λt is diagonal with descending diag-

onal entries.6 We can then obtain Qt and Λt from an eigendecomposition of the conditional

covariance matrix of OLS factor returns, because it factors as

(
X ′tXt

)−1
X ′tΣtXt

(
X ′tXt

)−1
= QtΛtQ

′
t, (36)

6. The last two assumptions correspond to identification assumption in Kelly, Pruitt, and Su (2019):
Γ′βΓβ = IK and cov(f t) has only descending diagonal entries (their notation).
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where Qt, given the assumptions above, becomes a matrix of eigenvectors of this covariance

matrix associated with the K non-zero eigenvalues. Suppose further that St = (Q′X ′tXtQ)−1.

Then we obtain a conditional version of the IPCA factors of Kelly, Pruitt, and Su (2019):

f IPCA,t+1 = (Q′tX
′
tXtQt)

−1Q′tX
′
tzt+1. (37)

The expression for f IPCA,t+1 in (37) above is a conditional version of the first of two

first-order conditions in Kelly, Pruitt, and Su (2019) that define the instrumented principal

components analysis (IPCA) estimator. We can also show that a conditional version of

their second first-order condition (their eq. 7) holds in terms of population moments. If it

holds, then the right-hand side their second first-order condition should equal vec(Qt) when

evaluated with the factors in (37) and under the conditions of Corollary 2. Evaluating their

second first-order condition, this is indeed what we obtain:

(
X ′tXt ⊗ Et[f t+1f

′
t+1]

)−1 Et [(X ′t ⊗ f t+1

)
zt+1

]
=

(
X ′tXt ⊗ Et[f t+1f

′
t+1]

)−1
vec(Et[f t+1z

′
t+1]Xt)

= vec
(
Et[f t+1f

′
t+1]

−1Et[f t+1z
′
t+1]Xt

(
X ′tXt

)−1)
= vec(Qt), (38)

where for the last step we evaluated the conditional expectations using (37), (33), (35), and

(34). Hence, factors constructed as in (37) with Qt obtained as eigenvectors of the OLS

factor return covariance matrix in (36) solve both first-order conditions, i.e., they are indeed

the IPCA factors.7

Kelly, Pruitt, and Su (2019) show that in the case of orthonormalized characteristics,

IPCA is equivalent to PCA on returns managed portfolios with weights X ′t. Our result here

7. The assumption of time-constant Qt and Λt can justify working with a constant Q extracted from
an average conditional, or approximately unconditional, covariance matrix. Working through the first-order
condition in (38) expressed in terms of unconditional expectations (the population analog to the sample
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shows that IPCA is more generally equivalent to PCA on managed portfolios, even in the

case where characteristics are not orthonormalized, if the managed portfolios are constructed

as OLS factors. In particular, applying PCA to OLS portfolios recovers Qt. By applying

this matrix to univariate portfolios X ′tzt+1 and further rotating them by an OLS factor (as

in (37)), yields our version of the IPCA estimator.

The OLS factor population covariance matrix that we apply PCA to in (36) is singular if

K < J as it is a J × J matrix with only K non-zero eigenvalues. The matrices Λt and Qt in

our notation contain only the non-zero eigenvalues and the eigenvectors associated with the

non-zero eigenvalues. With an estimated covariance matrix in a finite sample, the truly zero

eigenvalues would not be exactly zero but likely very small.

Example 6 (PPCA) Suppose U ′tXt = 0, Q′tX
′
tXtQt = I and Λt is diagonal with descend-

ing diagonal entries.8 We can then obtain Qt and Λt from an eigendecomposition of the

conditional covariance matrix of univariate factor returns constructed using orthonormalized

characteristics, because it factors as

(
X ′tXt

)− 1
2 X ′tΣtXt

(
X ′tXt

)− 1
2 =

(
X ′tXt

) 1
2 QtΛtQ

′
t

(
X ′tXt

) 1
2 , (39)

where Gt = (X ′tXt)
1
2 Qt is orthonormal by assumption and thus can be recovered as a matrix

of eigenvectors of this covariance matrix associated with the K non-zero eigenvalues. We get

Qt = (X ′tXt)
− 1

2 Gt. Suppose further that St = I. Then we obtain a conditional version of

averages in KPS), we the obtain vec(Q):[
E
(
X ′tXt ⊗ Et

[
fKPS,t+1f

′
KPS,t+1

])]−1 E
[(
X ′t ⊗ fKPS,t+1

)
zt+1

]
=

[
E
(
X ′tXt

)
⊗ Λ

]−1
vec

(
E
[
Et[fKPS,t+1z

′
t+1]Xt

])
=

[
E
(
X ′tXt

)
⊗ Λ

]−1
vec

(
ΛQE

(
X ′tXt

))
= vec(Q).

8. The last two assumptions correspond to identification assumption in Kim, Korajczyk, and Neuhierl
(2019): Gβ(Xt)

′Gβ(Xt) = Θ′β,tX
′
tXtΘβ,t = IK and cov(f t) has only descending diagonal entries (their

notation).
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the PPCA factors of Kim, Korajczyk, and Neuhierl (2019):

fPPCA,t+1 = G′t
(
X ′tXt

)− 1
2 X ′tzt+1 (40)

=
(
Q′tX

′
tXtQt

)−1
Q′tX

′
tzt+1 = Q′tX

′
tzt+1. (41)

The expression for fPPCA,t+1 in (41) above is a conditional version of the factors in

Kim, Korajczyk, and Neuhierl (2019) obtained from a cross-sectional regression of stock

returns on their factor loadings Gβ(Xt) which we parameterize as linear here, Gβ(Xt) =

XtQt. To see this, note that Kim, Korajczyk, and Neuhierl (2019) identify Gβ(Xt) via

a PCA on projected returns, Xt (X ′tXt)
−1
X ′tzt+1. Under our assumption in (35), their

covariance matrix is equal to XtQtΛtQ
′
tX
′
t. Because XtQt is orthonormal, their PCA

solution, therefore, recovers Gβ(Xt) = XtQt and their factors match ours in (41). The

expression in (40) shows that we can alternatively identify these factors via a simple PCA

on univariate portfolio returns (rather than projected individual stock returns) constructed

using orthonormalized characteristics, to obtain Qt.

Our assumptions here are closely related to those in Kim, Korajczyk, and Neuhierl (2019).

Their assumption 2 (ii) states that factor model residuals and Xt are, asymptotically, cross-

sectionally orthogonal. Their identifying assumptions 3 are the same as our identifying as-

sumption in the example. Our assumption that U ′Xt = 0 is the population version of this

assumption. Lastly, our normalization assumption in Example 6 are analogous to theirs.

Overall, the results in this section show that there is a great deal of similarity in seemingly

different recently proposed methods for dimension reduction. Our earlier results on the

conditions required for characteristics-based factors to span the SDF provide a basis to get

to these dimension-reduction in a straightforward way by applying PCA to a certain set of

portfolio sorts.
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IV. Extensions

Before turning to an empirical analysis, we first discuss a number of conceptual issues that

come up if we want to relate our results from the previous sections to empirical data.

IV.A. Alternative assumptions about expected returns

As we discussed, our Assumption 1 that conditional expected returns are linear in charac-

teristics is, in principle, completely general as for any given set of basis characteristics, one

could define Xt as including nonlinear functions and interactions of these basis characteris-

tics. That said, once a researcher has settled on a particular set of characteristics to include

in Xt, the linearity assumption has economic content. For this reason, one may want to

entertain alternative assumptions that link a specific characteristics matrix Xt to µt.

For example, within a framework in which characteristics predict returns because of mis-

pricing, our baseline Assumption 1 can be reasonable if the characteristics in Xt are directly

related to the magnitude of mispricing. How this could be true is easiest to see for scaled

price ratios like the book-to-market ratio. If the numerator (book value) controls for differ-

ences across stocks in their fundamental scale and the remaining price variation that comes

in through the denominator (market value) captures mispricing.

However, an alternative view may be that characteristics inXt capture not the magnitude

of mispricing directly but rather investor sentiment, and hence sentiment investors demand for

certain types of stocks. If these sentiment investors trade against mean-variance arbitrageurs,

the portfolio optimization of the arbitrageurs induces cross-dependencies across expected

returns and covariances that can result in equilibrium expected returns that differ from

Assumption 1 (for this given Xt). To illustrate, consider a CARA-normal model as in

Kozak, Nagel, and Santosh (2018) where a measure (1 − θ) of rational arbitrageurs have

demand 1
aΣ
−1
t µt and a measure θ of sentiment investors have demand in excess of rational

investor demand of Xtd for some vector d, i.e., 1
aΣ
−1
t µt +Xtd. With total asset supply of
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one for each asset, collected in vector ι, market clearing implies

µt = aΣt(ι− θXtd) = ΣtXtφ, (42)

for some vector φ, where the last equality follows because Xt includes a column of ones.

Thus, in this case instead of Assumption 1, we would have

Assumption 2

µt = ΣtXtφ (43)

with some J × 1 vector φ.

A closely related assumption appears in Brandt, Santa-Clara, and Valkanov (2009). They

assume that mean-variance efficient portfolio weights are linear in characteristics and market

portfolio weights, while here Assumption 2 implies that the weights Σ−1t µt = Xtφ are linear

in characteristics.

The SDF in this case is spanned by GLS factors from GLS cross-sectional regression of

zt+1 on ΣtXt, or rotations of these factors. We can obtain these factors by replacing Xt in

Proposition 1 with ΣtXt everywhere. We get factors

f t+1 = S′tX
′
tzt+1, (44)

i.e., the GLS factors simplify to univariate factors or rotations thereof (e.g., OLS factors with

St = (X ′tXt)
−1). In other words, one can construct factors that span the SDF solely based

on the information in characteristics. No information about Σt is required to construct these

factors! Unfortunately, as we see in the following example that summarizes the univariate fac-

tor case, conditional factor means and betas vary over time with Σt, which renders empirical

implementation difficult without further assumptions.

Example 7 Suppose St = IJ . We then obtain an SDF with factors f t+1 = X ′tzt+1. Factor
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means and covariances are time-varying, µf,t = X ′tΣtXtφ, Σf,t = X ′tΣtXt, and factor risk

prices are constant: bt = φ. Factor betas βt = (X ′tΣtXt)
−1

ΣtXt are varying with Σt.

Under Assumption 2 dimension reduction works in the same way and under the same

conditions on the covariance matrix as in Corollary 2.9

Whether Assumption 2 or Assumption 1 is more appropriate once a researcher has settled

on a specification of Xt is an empirical question. We return to our baseline Assumption 1

for the rest of this section.

IV.B. Conditioning down

To conduct empirical work, our results in terms of conditional moments are not straightfor-

ward to work with. In empirical implementation, researchers often like to work with uncon-

ditional pricing restrictions and unconditional moments as estimating conditional moments

requires additional assumptions for modeling the dynamics of conditional moments.

For this purpose, it is convenient if a model implies that factors’ conditional expected

returns are constant and either conditional factor betas or factor prices of risk are also

constant or depend only on the observable characteristics Xt (and not on Σt). For example,

if β = Xt and µf,t = µf , one can implement the factor model in its conditional beta pricing

formulation and then condition down to

E[zt+1] = E[Xt]µf . (45)

Alternatively, if bt = φ and µf,t = µf , we have an SDF

Mt+1 = 1− φ′(zt+1 − µf ) (46)

9. In this case, we don’t need the additional assumption about expected returns in (33) because its expected
returns automatically inherit the lower-dimensional structure through their dependence on the covariance
matrix in Assumption 2.
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which we can rescale to

Mt+1 = 1− φ′

1− φ′µf
zt+1 (47)

without affecting the pricing implications for excess returns. In this formulation, one can

estimate the J constant prices of risk b = φ′

1−φ′µf
from the J unconditional pricing restrictions

E[Mt+1f t+1] = 0 without having to model conditional moments.

Recall that our earlier results in Section II expressed factors up to a rotation by a nonsin-

gular matrix St. We can choose this matrix to generate factors with the desired conditioning-

down properties.

Consider first the GLS factors and their rotations. The case we presented in Example

1 with St =
(
X ′tΣ

−1
t Xt

)−1
yields βt = Xt and µf,t = φ, so the beta-pricing formulation

conditions down nicely, but there is no St that produces both prices of risk that do not

depend on Σt and factor means that do not depend on Σt. As a consequence, there does

not exist a version of St that would yield an SDF that we could estimate without having to

model Σt.

For OLS factors and their rotations, the case in Example 3 with St = (X ′tXt)
−1

yields

βt = Xt and µf,t = φ, so again the beta-pricing formulation conditions down nicely, but

there is no St that produces both prices of risk that do not depend on Σt and factor means

that do not depend on Σt. As a consequence, without additional assumptions, there does

not exist a version of St that would yield an SDF that we could estimate without having to

model Σt.

Under the alternative Assumption 2 about expected returns in Section IV.A, too, there

is no specification of St that produces, at the same time, prices of risk that do not depend

on Σt and factor means that do not depend on Σt.

IV.C. Orthonormalized characteristics

Empirical work often considers characteristics that are normalized in some fashion. For

example, portfolio sorting procedures use only information about cross-sectional ranks of
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stocks by characteristics, not the value of the characteristics themselves; other methods trans-

form characteristics into cross-sectional ranks and use the rank-transformed characteristics

as portfolio weights (Kozak, Nagel, and Santosh 2020); further alternatives include orthonor-

malizing characteristics such that, after orthonormalization, X ′tXt = IJ holds. Common

to these methods is that, to varying degrees, they remove time-series variation from char-

acteristics. For example, if the original characteristics matrix includes a column of ones as

first column, and characteristics are then orthonormalized using the Gram-Schmidt process,

this cross-sectionally demeans all characteristics and removes time-series variation in their

cross-sectional variances and correlations.

IV.D. Conditioning down with normalized characteristics

We now show that constructing factors based on such normalized characteristics can be

advantageous because the requirements we discussed in Section IV.B for unconditional pricing

restrictions to imply an SDF with constant factor prices of risk and constant factor means.

However, before we can discuss conditioning down the pricing relationship to uncondi-

tional moments, we first need to deal with the fact that if Assumption 1 holds for a given

set of original characteristics, it does not necessarily hold for the normalized version of these

characteristics. While it is, in the end, an empirical question whether it holds for the nor-

malized or original characteristics, there are plausible reasons to think that it could hold for

the former if it holds for the latter. To see why, let’s focus on the case of orthonormalization

and let Ct be the original characteristics matrix and Xt = CtN
−1
t the normalized one, with

N t = (C ′tCt)
1
2 . What is needed, roughly, is that the normalized characteristics do not con-

tain information about the time-variation in cross-sectional mean, dispersion, or correlation

of characteristics that the normalization has removed. More precisely, we need that

E[N t|Xt] = N (48)

for some constant matrix N . If this relationship holds, and Assumption 1 holds for the
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original characteristics, i.e., E[zt+1|Ct] = CtφC , then,

E[zt+1|Xt] = E {E[zt+1|Ct]|Xt} = Xtφ, φ = NφC . (49)

i.e., we see that the relationship between characteristics and conditional expected excess re-

turns remains linear with constant coefficients φ. In this case, GLS factors constructed based

on the normalized characteristics price perfectly all assets conditional on Xt. The maximum

squared Sharpe ratio attainable conditional on Xt may be lower than conditional on Ct,

but all of our earlier analysis of the conditions for OLS factors to span the SDF, for factor

hedging, and dimension reduction then go through based on the normalized characteristics

with conditional moments conditioned on Xt.

Normalization of characteristics can be useful if we wish to condition down to uncondi-

tional pricing restrictions and obtain an SDF with constant factor prices of risk and constant

factor means. For instance, purging characteristics of information about time-varying cross-

sectional mean, dispersion, or correlation of characteristics, removes much of the information

that in characteristics that could be related to time-variation in Σt. As a consequence, rel-

atively mild assumptions suffice to obtain constant factor prices of risk and constant factor

means.

Based on orthonormalized characteristics, the OLS factors in Example 3 have means

µf,t = φ and prices of risk bt = Ψ−1t φ. So time-variation in Ψt is the only remaining source of

time-variation in the prices of risk. With orthonormalized characteristics, the assumption that

Ψt is constant is a relatively weak one. Recall that all conditional moments in our analysis,

including Ψt, are conditioned on Xt. Since orthonormalization removes variation over time

in the average value of characteristics, their dispersion, and their correlation, there may

not be much information left in characteristics that captures time-variation in Ψ. Therefore,

conditional on the normalized characteristics Xt, Ψt could be constant even it is not constant

conditional Ct.

For example, consider book-to-market equity ratios. Before normalization, the average
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book-to-market ratio across firms may have time-series variation that is informative about

time-variation in conditional covariances Ψt. Orthonormalization removes this common vari-

ation. Similarly, before normalization, book-to-market ratios may have time-varying cross-

sectional dispersion that is informative about time-variation in Ψt. Orthonormalization re-

moves this information. There could potentially still be some information in, say, the cross-

sectional ordering of firms by characteristics each period that could contain information about

time-varying in Ψt, but it seems likely that orthonormalizing removes most of the variation

in characteristics that could be informative about time-variation in Ψt.

If Ψt is indeed constant conditional on the orthonormalized characteristics, then prices of

risk are constant, bt = b, and hence the SDF

Mt+1 = 1− b′(f t+1 − µf ) (50)

can be estimated from unconditional pricing restrictions and without estimating a condi-

tional covariance matrix. Thus, normalization combined with a relatively weak assumption

about Ψt makes it possible to use standard estimation approaches that rely on unconditional

moments.

IV.E. Testing

We close this section with a few remarks on testing. The previous analysis made clear

that heuristic factor models, such as OLS factors, only span the SDF when the conditional

covariance matrix satisfies certain conditions. How can we let the data tell us whether these

conditions hold? Going into the sampling theory of estimation and testing is beyond the

scope of this paper. Instead, we will highlight population moment conditions that reveal

misspecification (and ones that do not). We focus our discussion on OLS factors.

It may seem straightforward to test an OLS factor model. Let f t+1 denote the OLS

factors from Example 3. In this case we have observable conditional betas βt = Xt and
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constant factor means µf,t = φ. Therefore, it may seem that one could just evaluate whether

E[zt+1] = E[Xtf t+1] (51)

holds in the data. In fact, this is what Fama and French (2020) do in their empirical work

when they evaluate an OLS factor model. However, testing the equality (51) just tests

whether there is a linear relation between characteristics and expected returns as stated in

Assumption 1. If Assumption 1 holds, the equality (51) is true irrespective of whether the

conditions in Proposition 2 for OLS factors to span the SDF hold or not. To see this, note

that E[Xtf t+1] = E[Xt(X
′
tXt)

−1X ′tzt+1] = E[Xtφ] = E[zt+1] by Assumption 1. So testing

the equality (51) is not a test of the OLS factor asset pricing model.

The key here is that misspecification due to the conditional covariance matrix not satis-

fying the conditions in Proposition 2 would show up as βt deviating from Xt. By assuming

βt = Xt, the approach of Fama and French (2020) assumes away any misspecification of the

SDF.

One way to testing for misspecification is to construct hedged factors as in Sections II.C

and II.D. If the hedged factors achieve a higher Sharpe ratio than the OLS factors, the OLS

factors do not span the SDF. We implement this approach empirically in the next Section.

V. Empirical analysis

Our analysis so far provides conditions on the conditional covariance matrix of individual

stock returns under which OLS factors (and rotations thereof) span the SDF, as well as

conditions under which dimension-reduction via principal components analysis of OLS factor

portfolios yields the same factors as IPCA. Do these conditions hold empirically for various

combinations of characteristics-based factors used in the prior literature?

Directly answering this question by comparing the MVE portfolio’s (maximum) Sharpe

ratio of OLS factors to the maximum Sharpe ratio obtainable with GLS factors is difficult
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because constructing GLS factors would require the estimation and inversion of a large con-

ditional covariance matrix for an unbalanced panel of thousands of stocks. Instead, we use

our earlier results on iterated factor hedging. If a set of OLS factors does not span the SDF

because the conditional covariance matrix does not satisfy the assumptions required for SDF

spanning, then hedging the factors should improve the maximum Sharpe ratio. If a set of OLS

factors already spans the SDF, then factor hedging should not improve the maximum Sharpe

ratio of the factors. In fact, empirically, with estimated moments that are contaminated with

estimation error, factor hedging might lead to a deterioration in the Sharpe ratio.

V.A. Data and factor construction

We use rank-transformed stock characteristics from Kozak (2019) and daily stock returns

from November 1973 to the end of 2020. We apply several filters to preserve characteristics

with maximum data availability. In particular, we remove any characteristics for which more

than 25% of the observations in the panel of firms are missing. In addition, we remove any

time periods in the early part of the sample for which less than 500 firms are available.

Lastly, we drop any date-stock observations for which there are missing characteristics. We

collect the resulting 27 rank-transformed characteristics for each of the stocks in the monthly

characteristics matrix Xt.
10

As we discussed in Section IV.D, normalizations such as rank-transformation remove time-

varying components of characteristics. Unlike orthonormalization, rank-transformation does

not remove information about time-varying correlations, but time-varying components of

cross-sectional means and dispersion of characteristics are removed. On one hand, removing

these components may restrict the investment opportunity set and lower the maximum Sharpe

ratio that is attainable. On the other hand, the conditions necessary for means, covariances,

and risk prices of OLS factors to be constant are more likely to hold. If they are constant, the

unconditional maximum Sharpe ratio of the OLS factors is equal to its (constant) conditional

10. Table I provides the list of characteristics we use.
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version and we can evaluate OLS factor models based on the unconditional maximum Sharpe

ratio that the factors attain.

At the end of each month t, we construct OLS factors weights as (X ′tXt)
−1X ′t. To avoid

intra-month trading, we adjust daily portfolio weights within the following month t + 1 to

make the factors buy-and-hold during the month. Rebalancing to OLS factor weights then

takes place at the end of each month t+ 1, and so on.

Our main analysis is conducted out of sample using a split-sample approach. Specifically,

we split the sample into two parts: pre-2005 and 2005–present. We estimate any time-series

parameters using the earlier sample. For cross-sectional regressions which rely on rolling

covariance estimates, we use the most recently available data up to that point in time.

When reporting out-of-sample (OOS) MVE portfolio Sharpe ratios, we use the sample

covariance matrix of daily OLS factor returns as an estimate of the unconditional factor

covariance matrix and factor means as estimates of unconditional expected excess returns

on the factors, with both estimated in the pre-2005 sample of daily returns. Combining

information from covariances and means, we compute MVE portfolio weights which we then

fix and apply to the 2005–present sample of monthly stock returns. We then compute and

report annualized unconditional Sharpe ratios of these series, to which we refer as OOS

maximum Sharpe ratios.

V.B. Empirical performance of hedged factors

We implement the factor hedging procedure of Section II.C. We compute daily rolling covari-

ances of individual stocks returns with the univariate factors within overlapping backward-

looking 5-year windows (with a minimum requirement of 20 days of data). We then regress

these daily covariances on the characteristics Xt. The residuals from these regressions give

us daily portfolio weights W h,t of the hedging portfolios which we then use to calculate daily

hedging factor returns. This completes the first step in the approach we outlined in Section

II.C. Instead of the second and third step outlined in the main text in Section II.C that was
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Figure I
Improvement in OOS MVE Sharpe ratios due to iterative hedging. We construct

hedged factors and iterate by hedging up to five times. The plot shows improvement in
average out-of-sample MVE portfolio’s Sharpe ratios constructed from hedged OLS factors

relative to unhedged factors, in %, for all models with a constant and 1–25 additional
factors. Improvements are averaged across many factor draws. MVE portfolio weights are
estimated in the pre-2005 sample using daily returns. Sharpe ratios are evaluated in the

2005–present sample using monthly stock returns.

convenient for the theoretical analysis, we now use the approach of DMRS that we discussed

in footnote 4 of Section II.C and that is equivalent under the conditions of Proposition 3. That

is, we purge the ad-hoc factors from unpriced risks by regressing the daily univariate factors

on the daily hedge portfolio returns. The parameters of this regression are estimated using

the pre-2005 sample and then applied to the rest of the sample to construct residuals. The

residuals are the hedged univariate factors. We define characteristics associated with these

factors to be “hedged characteristics”. Next, we construct OLS portfolios based on these

“hedged characteristics”. To construct iterated hedged factors, we repeat this procedure.

Figure I shows improvement in average out-of-sample MVE portfolio’s Sharpe ratios con-

structed from hedged OLS factors relative to unhedged factors, in %. We run the hedging

procedure for up to five rounds of hedging. We calculate these improvements for OLS factor

models with different numbers of characteristic-based factors from one to 25, in addition to

the constant characteristic which is implicitly included in all models. Since there are differ-
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ent possible subsets of J factors from the full 27 OLS factors, we draw, for each J , random

subsets of J factors. We do this many times and Figure I shows the percentage improvement

in the maximum Sharpe ratio averaged across these random subsets for each J .

As the figure shows, the benefit of hedging decreases as the number of characteristics

increases. This is what we anticipated in our discussion of Proposition 2. Including a large

number of characteristics makes it more likely that loadings on major sources of covariances

are spanned by the columns of Xt. This renders violations of the conditions of Proposition

2 quantitatively less important. As a consequence, OLS factors approximately span the SDF

and factor hedging provides little additional benefit.

The benefit approaches zero and might even turn negative when J is large. Under pop-

ulation moments, as in our earlier theoretical analysis, hedging would never lead to a dete-

rioration of the Sharpe ratio in sample. However, with estimated moments, estimation error

contaminates the hedging procedure and hedging can then lead to a deterioration, especially

out of sample.

The figure also shows that there can be a substantial benefit from iterating on the hedging

procedure using the iterated hedging approach that we developed in our theoretical analysis.

This benefit is particularly big if the number of factors is relatively small. For example, with

J = 1, hedging does not seem to raise the maximum OOS Sharpe ratio on average (although

it does so for some of the portfolios individually). Iterating for the total of five hedging

rounds leads to an improvement of 80%, on average, that is, the maximum Sharpe ratio after

five rounds of hedging almost doubles relative to the maximum Sharpe ratio obtained from

the original unhedged portfolios. The marginal benefit of each additional round of hedging

is declining.

Table I shows how hedging changes the out-of-sample Sharpe ratio of various specific single

factor models. The first column shows unhedged MVE Sharpe ratios, the next 7 columns

hedge factors iteratively up to 7 times. In each row of the table, the characteristics matrix

Xt includes a constant and the characteristic listed in this row. For all of these, since only
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TABLE I
Maximum hedged Sharpe ratios of all one-factor models (OLS factors; with a constant).

We report maximum out-of-sample Sharpe ratios of all models which use OLS factors (first column),
OLS hedged factors for n = 1..7 rounds, as well as approximate GLS factors (last two columns). All
models include two characteristics in Xt: a constant, and one of the characteristics listed in the rows.
GLS factors use covariance matrix from models which use either 30 Fama-French industry portfolios
(column “GLS ind.”), or the sentire set of characteristics in the table (last column). Portfolio weights
are computed using daily buy-and-hold adjusted returns; performance is evaluated using monthly
(annualized) stock returns. The row labeled “ER (predicted)” uses fitted values from a panel regression
of returns on all characteristics as a single characteristic. The last row averages the numbers across
all models.

OLS Hedged n times GLS

1 2 3 4 5 6 7 ind. char.

Size 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 0.8 1.2
Value (A) 0.5 0.3 0.1 0.1 0.2 0.3 0.4 0.4 0.7 1.0
Gross Prof. 0.8 1.0 1.1 1.2 1.3 1.3 1.4 1.4 1.6 1.5
F-score 0.9 0.6 1.0 1.2 1.3 1.4 1.5 1.5 1.1 1.5
Debt Issuance 0.8 0.9 1.0 1.1 1.1 1.2 1.2 1.2 1.1 1.4
Share Repurchases 0.6 0.1 0.5 0.9 1.1 1.2 1.3 1.4 1.0 1.3
Net Issuance (A) 0.9 0.9 0.9 1.1 1.3 1.3 1.4 1.4 1.2 1.5
Asset Growth 0.7 0.6 0.6 0.6 0.7 0.8 0.8 0.9 1.0 1.4
Asset Turnover 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.4
Gross Margins 0.6 0.4 0.7 0.8 1.0 1.1 1.2 1.2 0.9 1.4
Earnings/Price 0.6 0.1 0.4 0.6 0.8 1.0 1.1 1.1 0.9 1.4
Leverage 0.3 0.1 0.0 -0.0 0.1 0.2 0.3 0.4 0.6 0.8
ROA (A) 0.4 0.3 0.7 1.0 1.2 1.3 1.3 1.3 0.7 1.3
Return on BE (A) 0.5 0.3 0.7 0.9 1.1 1.2 1.2 1.2 0.7 1.4
Sales/Price 0.6 0.6 0.4 0.4 0.5 0.6 0.7 0.7 0.9 1.0
Industry Mom. 0.9 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.7
Momentum (12m) 0.7 0.8 1.1 1.2 1.3 1.4 1.4 1.4 1.1 1.3
Momentum-Rev. 0.5 0.3 0.4 0.5 0.7 0.7 0.8 0.9 0.7 1.1
Value (M) 0.4 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.7 1.3
Net Issuance (M) 1.0 0.9 0.9 1.0 1.2 1.3 1.4 1.5 1.3 1.8
Short-Term Rev. 0.6 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 1.7
Idiosyncratic Vol. 0.8 0.4 0.8 1.0 1.2 1.3 1.4 1.5 1.0 1.7
Beta Arbitrage 0.8 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 1.2
Industry Rel. Rev. 0.7 0.5 0.7 0.7 0.8 0.8 0.8 0.8 0.9 1.8
Price 0.5 0.3 0.5 0.7 0.9 1.0 1.0 1.1 0.8 1.3
Firm’s age 0.6 0.4 0.7 1.0 1.1 1.2 1.2 1.3 0.9 1.4
Share Volume 0.8 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 1.4

ER (predicted) 1.7 1.7 1.6 1.6 1.6 1.7 1.7 1.8 1.6 2.5

Average 0.7 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.0 1.4
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one characteristics is used, it is highly unlikely that the conditions hold that are required by

Proposition 2 for OLS factors to span the SDF. Hedging the factors should therefore improve

the Sharpe ratio. Consistent with this logic, we find improvements from hedging for every

characteristic.

To interpret this correctly, it is important to keep in mind that the failure of the unhedged

factors to span the SDF is not a simple consequence of the fact that single factor models

omits other characteristics that are informative about expected returns but are left out from

the single factor model. The hedged factors do not use any information from these other

characteristics either! Instead, the reason for the inferiority of the unhedged factors is that a

single characteristic is not enough to satisfy the conditions in Proposition 2 for OLS factors

to span the SDF that prices assets conditional on this single characteristic.

To see this more clearly, we report Sharpe ratios based on approximate GLS factors in the

last two columns of the table. In both cases the covariance matrix of returns is approximated

by a separate standalone OLS factor model which uses either 30 Fama and French industries

as characteristics (column labeled “ind.”) or the set of all original characteristics listed in

the table (column labeled “char.”). That is, the Sharpe ratios in these two columns are still

based on a single-factor model, but the factor construction uses the covariance matrix of

returns estimated separately from a model with a larger number of factors. The single-factor

GLS models, therefore, still omit other characteristics that are informative about expected

returns, but, at the same time, they approximately satisfy conditions in proposition 1 and

thus achieve mean-variance efficiency (conditional on a narrow information set which includes

a single characteristic). The table shows that hedging OLS portfolios moves them in the

direction of the GLS portfolio. Factors hedged seven rounds perform generally better than

GLS factors which use industries in the construction of the covariance matrix, but worse than

GLS factors which use all characteristics in estimating to covariance matrix.

As the table shows, there is considerable heterogeneity in how much hedging improves the

Sharpe ratio. Characteristics like returns on assets or book equity show dramatic improve-
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ments of about 100–200% with seven rounds of hedging, while others show little out-of-sample

improvement. On average, across all portfolios, maximum Sharpe ratios increase from 0.7

(unhedged factors) to 1.1 (factors after seven rounds of hedging), and to 1.4 for characteristic-

based GLS factors, as can be seen in the last row of the table.

Lastly, we construct a composite characteristic which uses fitted values from a panel

regression of returns on all characteristics (row labeled “ER (predicted)”). This characteristic

summarizes expected return predictability of all original characteristics, but uses a single

factor and thus generally does not satisfy the conditions in Proposition 2 for OLS factors

to span the SDF that prices assets conditional on this single composite characteristic. As

such, it is a natural candidate for hedging or GLS factor construction. The table shows that

benefits of hedging for this characteristics are limited, with only a slight improvement in

OOS Sharpe ration after seven rounds of hedging. The corresponding characteristic-based

GLS factor, however, does produce a significantly higher Sharpe of 2.5 (an increase from 1.7),

which indicates that the conditions in Proposition 2 are indeed likely to be violated. In other

words, sorting stocks on fitted expected returns preserves information in means but largely

discards information in covariances, which prevents the factor from reaching mean-variance

efficiency.

V.C. Dimensionality reduction

Our final empirical analysis looks at dimension reduction. In Section III, we showed the

conditions necessary for dimensionality reduction to be possible. We also showed a few ways

how to proceed with dimensionality reduction and how these approaches are related. In this

section we explore and compare these methods empirically.

Comparison of PCA on OLS factors with IPCA. In Example 5 we showed that the

factors f t+1 in (37) and (38) are a conditional version of the first of two first-order conditions

in Kelly, Pruitt, and Su (2019) that define the instrumented principal components analysis
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TABLE II
Spanning of IPCA factor loadings with eigenvectors of OLS portfolios.

We report R-squared of regressions of each of the 10 IPCA factor loadings onto 10 eigenvectors
associated with dominant PCs extracted from the set of OLS portfolios.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

1.00 0.96 0.94 0.98 0.88 0.90 0.78 0.53 0.26 0.39

(IPCA) estimator. This means that a conditional equivalent of an IPCA estimator can be

constructed using PCA on managed portfolios, even in the case where characteristics are

not orthonormalized, if the managed portfolios are constructed as OLS factors. In particular,

applying PCA to OLS portfolios recovers Qt. By applying this matrix to univariate portfolios

X ′tzt+1 and further rotating them by an OLS factor (as in (37)), yields our version of the

IPCA estimator.

The assumption of time-constant Qt and Λt can justify working with a constant Q ex-

tracted from an average conditional, or approximately unconditional, covariance matrix. In

practice, however, the theoretic equivalence between our analytic IPCA approach and the

iterative procedure of Kelly, Pruitt, and Su (2019) might not hold exactly because this as-

sumption and the assumptions in Corollary 2 about the covariance matrix might not be

satisfied empirically. We, therefore, investigate the extent to which this equivalence holds in

the data in Table II.

We start by implementing the iterative IPCA approach of Kelly, Pruitt, and Su (2019)

and applying it to our data to extract 10 IPCA factors and their respective betas (the matrix

Γβ in their paper). Next, we use PCA on OLS portfolios to construct our matrix Q. In Table

II we regress each of the 10 IPCA eigenvectors associated with highest eigenvalues (first 10

columns of Γβ) onto the first 10 columns of Q to see how well factor loadings based on our

procedure span IPCA factor loadings. The table reports R-squared of these multivariate

regressions.

The table shows that while our factors do not exactly match the IPCA ones in the
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TABLE III
Dimensionality reduction: benchmarking different portfolio sorts.

The table reports maximum in-sample (top panel) and out-of-sample (bottom panel) annualized
Sharpe ratios of MVE portfolios constructed from N PCs (columns) of one of five portfolio sorts
(rows): (i) univariate from Kozak, Nagel, and Santosh (2018) and Kozak, Nagel, and Santosh (2020),
(ii) OLS portfolios from Fama and French (2020), (iii) IPCA from Kelly, Pruitt, and Su (2019) im-
plemented as in Example 5, (iv) PPCA from Kim, Korajczyk, and Neuhierl (2019) implemented as in
Example 6, and (v) univariate with orthonormalized characteristics. Out-of-sample results are based
on a split sample estimation before/after 2005.

1 2 3 4 5 6 7 8 9 10

In-sample Sharpe

Univariate 0.4 0.4 1.0 1.1 2.1 2.2 2.2 2.4 2.5 2.5
OLS 0.6 0.8 1.4 1.6 1.6 1.6 1.6 1.7 2.0 2.8
IPCA 0.5 1.2 2.9 3.2 3.2 3.2 3.3 3.2 3.8 3.8
PPCA 0.5 0.5 1.0 1.5 3.4 3.6 3.7 3.7 3.9 4.0
Orthonorm. 0.5 0.5 0.8 1.5 3.1 3.3 3.3 3.3 3.7 3.7

Out-of-sample Sharpe

Univariate 0.3 0.1 0.4 0.5 1.1 1.2 1.0 1.4 1.4 1.5
OLS 0.4 0.5 0.7 0.8 0.8 0.8 0.8 0.8 0.9 1.6
IPCA 0.4 0.6 1.6 1.8 1.7 1.8 1.7 1.5 2.2 2.3
PPCA 0.4 0.2 0.3 0.7 1.9 1.7 1.7 1.7 2.0 2.0
Orthonorm. 0.4 0.2 0.4 0.9 1.7 1.5 1.6 1.6 1.9 2.0

data, the first seven IPCA factor loadings are spanned by our factor loadings extremely

well, with R-squared exceeding 90% for almost all of these factors. We conclude that our

approach to identifying IPCA factors might be a viable analytic alternative to the costly

iterative procedure in Kelly, Pruitt, and Su (2019) and to working with orthonormalized

characteristics.

Comparison of dimensionality reduction methods applied to alternative sets of

portfolios. In Section III we discussed that alternative assumptions lead to different tech-

niques of how dimensionality reduction should be implemented. In particular, Example 5

showed that under Assumption (33) we should apply PCA to OLS portfolios to obtain eigen-

vectors and which we then apply to univariate portfolios, followed by a rotation, to construct

43



our IPCA factors (related to Kelly, Pruitt, and Su (2019)). Example 6 showed that under

Assumption (33) we should apply PCA to univariate portfolios constructed using orthonor-

malized characteristics to obtain PPCA factors from Kim, Korajczyk, and Neuhierl (2019).

As a benchmark, we also consider applying PCA to univariate portfolios as motivated by

Kozak, Nagel, and Santosh (2018) and Kozak, Nagel, and Santosh (2020), to OLS portfo-

lios used in Fama and French (2020), and to portfolios constructed using orthonormalized

charateristics.

We now compare empirical performance of these five methods of dimensionality reduction

in terms of spanning the unconditional MVE frontier. We apply PCA to monthly returns on

either of these five sets of portfolios to extract a lower-dimensional latent factor structure.

Table III reports maximum in-sample and out-of-sample annualized Sharpe ratios of MVE

portfolios constructed from these extracted latent factors, separately for each of the five

portfolio sorts. We report our results by varying the number of latent factors from 1 to 10

(shown in columns). To compute out-of-sample metrics we split the sample in 2005, estimate

MVE weights in the earlier part of the sample using daily retruns, and compute Sharpe ratios

in the latter part using these fixed weights and monthly returns.

The table shows that our analytical versions of IPCA factors from Example 5 and PPCA

factors from Example 6 perform better than PCA on simple univariate factors or OLS factors.

They achieve the highest in-sample and out-of-sample Sharpe ratios across most specifica-

tions, which are roughly comparable across these two specifications.

In the last row in either panel we orthonormalize characteristics cross-sectionally. Because

in this case (X ′tXt) = I, all four methods discussed above become equivalent. As discussed

in Section IV.D normalization of characteristics removes time-series variation in their cross-

sectional variances and correlations, but can be advantageous for conditioning down the

models. The maximum Sharpe ratio attainable conditional on orthonormalized characteristics

might, therefore, be lower than that of the original characteristics. Table III shows that

Sharpe ratio deterioration is small in the data – Sharpe ratios attainable from orthonormalized
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characteristics are roughly the same as the ones from IPCA and PPCA methods.

VI. Conclusion

Heuristic factor construction by sorting on firm characteristics, weighting by characteristics,

or computing OLS cross-sectional regression slopes does not use information about the co-

variance matrix of individual stock returns. As a consequence, these heuristic factors span

the SDF only if the covariance matrix satisfies certain special conditions. We work out what

these conditions are and obtain a number of insights:

First, horse races between direct linear characteristics-based prediction of excess returns

and heuristic characteristics-based factor models, or between different heuristic factor models,

have no economic content other than exposing the shortcomings of heuristic factor construc-

tion that are rooted in their neglect of information about the covariance matrix. Results from

such horse races do not lead to insights about competing economic theories of risk premia

and mispricing.

Second, when the individual stock return covariance matrix satisfies conditions such that

OLS cross-sectional regression slope factors span the SDF, then nonsingular rotations of

OLS factors span the SDF, too, including univariate factors in which stocks are weighted by

single characteristics. Choice among these different rotations is a matter of convenience, for

example, to obtain suitable conditioning-down properties.

Third, the conditions on the covariance matrix that allow OLS factors, or rotations

thereof, to span the SDF are more likely to hold when the number of characteristics em-

ployed by the econometrician is larger. Additional characteristics can help even if they are

unrelated to expected returns as long as they help to capture important sources of stock

return covariances.

Fourth, heuristic factor models that employ only a small number of characteristics can

benefit from purging unpriced risks using the hedging method proposed in Daniel, Mota,

Rottke, and Santos (2020). The reason why hedging works is that hedged factors can span the
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SDF under weaker conditions on the covariance matrix than the unhedged factors. Hedging

unpriced risks effectively incorporates some information about the covariance matrix into

factor construction, but without requiring inversion of a large covariance matrix.

Fifth, iterating on these hedging procedures allows further relaxation of the conditions

on the covariance matrix.

Sixth, when the relationship of expected returns and covariance matrix to characteristics

has a lower-dimensional structure such that information in J characteristics can be captured

by K < J characteristics, then the SDF can be spanned by K factors without requiring inver-

sion of a large covariance matrix. Under the conditions on the covariance matrix that allow

the factors to span the SDF, simple PCA on OLS factors or univariate factors constructed

using orthonormalized characteristics delivers the same SDF as the the IPCA method of

Kelly, Pruitt, and Su (2019), up to a rotation, and as the PPCA method of Kim, Korajczyk,

and Neuhierl (2019), respectively.

Overall, our results provide a foundation for the construction of reduced-form characteristics-

based factors that was missing so far in the vast empirical literature on factor models in

cross-sectional asset pricing.

46



References

Back, Kerry, Nishad Kapadia, and Barbara Ostdiek, 2015, “Testing factor models on
characteristic and covariance pure plays,” Working paper, SSRN.

Brandt, Michael W, Pedro Santa-Clara, and Rossen Valkanov, 2009, “Parametric Portfolio
Policies: Exploiting Characteristics in the Cross-Section of Equity Returns,” Review of
Financial Studies 22, 3411–3447.

Chib, Siddhartha, Yi Chun Lin, Kuntara Pukthuanthong, and Xiaming Zeng, 2021, “Slope
Factors Outperform: Evidence from a Large Comparative Study,” Working paper,
Washington University.

Daniel, Kent, Lira Mota, Simon Rottke, and Tano Santos, 2020, “The Cross-Section of
Risk and Return,” Review Of Financial Studies 33, 1927–1979.

Daniel, Kent, and Sheridan Titman, 1997, “Evidence on the Characteristics of Cross Sec-
tional Variation in Stock Returns,” Journal of Finance 52, 1–33.

Davis, James, Eugene F. Fama, and Kenneth R. French, 2000, “Characteristics, Covari-
ances, and Average Returns: 1929 to 1997,” Journal of Finance 55, 389–406.

Fama, Eugene F. Foundations of Finance (Basic Books, New York, NY, 1976).

Fama, Eugene F., and Kenneth R. French, 1993, “Common Risk Factors in the Returns
on Stocks and Bonds,” Journal of Financial Economics 33, 23–49.

Fama, Eugene F, and Kenneth R French, 2015, “A Five-Factor Asset Pricing Model,”
Journal of Financial Economics 116, 1–22.

Fama, Eugene F, and Kenneth R French, 2020, “Comparing Cross-Section and Time-Series
Factor Models,” Review of Financial Studies 33, 1891–1926.

Gerakos, Joseph, and Juhani T Linnainmaa, 2018, “Decomposing Value,” The Review of
Financial Studies 31, 1825–1854.

Grinblatt, Mark, and Konark Saxena, 2018, “When Factors Do Not Span Their Basis
Portfolios,” Journal of Financial and Quantitative Analysis 53, 2335–2354.

Hansen, Lars P., and Ravi Jagannathan, 1991, “Implications of Security Market Data for
Models of Dynamic Economies,” Journal of Political Economy 99, 225–262.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, “Digesting Anomalies: An Investment Ap-
proach,” Review of Financial Studies 28, 650–705.

Kelly, Bryan, Seth Pruitt, and Yinan Su, 2019, “Characteristics are Covariances: A Unified
Model of Risk and Return,” Journal of Financial Economics 134, 501–524.

Kim, Soohun, Robert A Korajczyk, and Andreas Neuhierl, 2019, “Arbitrage Portfolios,”
Review of Financial Studies, forthcoming.

Kozak, Serhiy, 2019, “Kernel Trick for the Cross Section,” Working paper, University of
Maryland.

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2018, “Interpreting Factor Models,”
Journal of Finance 73, 1183–1223.

47



Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2020, “Shrinking the Cross-Section,”
Journal of Financial Economics 135, 271–292.

Lu, Cuicui, and Peter Schmidt, 2012, “Conditions for the Numerical Equality of the OLS,
GLS and Amemiya–Cragg Estimators,” Economics Letters 116, 538–540.

48


