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Detemple, Bernard Dumas, Paolo Guasoni, Lars Hansen, Marcin Kacperczyk, Yueran Ma, Jianjun Miao, Scott
Robertson, Alireza Tahbaz-Salehi, Fernando Zapatero, and seminar participants at Boston University, Carnegie
Mellon University, Florida State University, INSEAD, LTI@Unito 3rd Asset Pricing Conference, and University of
Michigan for insightful comments and discussions. All errors are ours.
†INSEAD, pascal.maenhout@insead.edu.
‡Boston University, NBER and CEPR, avedolin@bu.edu.
§Boston University, haoxing@bu.edu.

mailto:pascal.maenhout@insead.edu
mailto:avedolin@bu.edu
mailto:haoxing@bu.edu


A large empirical literature in macroeconomics and finance documents significant

dynamic variation in forecasters’ expectational errors or belief distortions. One recurring

empirical finding is that these distortions oscillate between periods of pessimism and

optimism and respond to economic shocks. Figure 1 replicates this finding for two measures

of economic activity (GDP growth and unemployment) and inflation where we plot the

difference between the consensus survey forecast for each macroeconomic variable and a

model forecast. We highlight two observations from these series. First, confirming earlier

work, we document waves of both pessimism and optimism across all variables. Second,

a lesser known empirical fact is that belief distortions display significant sluggishness: the

large increase in pessimism after the 2008 Great Financial Crisis only dissipates very slowly,

remaining in a pessimistic state for a prolonged period.1

Time-variation in belief distortions has spawned a large theoretical literature based

on belief-based models of diagnostic expectations (Bordalo, Gennaioli, Ma, and Shleifer,

2020), fading memory (Nagel and Xu, 2019), or skewed priors (Afrouzi and Veldkamp, 2019).

Preference-based models rely on ambiguity aversion (Ilut and Schneider, 2014) or robust

control (Bhandari, Borovička, and Ho, 2019; Hansen, Szőke, Han, and Sargent, 2020). In

this paper, we contribute to the latter strand of literature. We present a novel theoretical

framework where agents’ attitude toward alternative models endogenously generates time-

varying pessimism and optimism and agents’ belief distortions react sluggishly. We then

study its implications for asset pricing and match salient features of equity markets using

a calibrated model.

The seminal work of Hansen and Sargent (2001) posits that economic agents with an

aversion to model ambiguity seek robustness by entertaining a family of models constructed

as a neighborhood around a baseline model and optimize against the worst-case within

this family.2 In a Bayesian interpretation, the worst-case model that the decision-maker

guards against can be viewed as representing endogenously distorted pessimistic beliefs.3

Throughout the literature on Hansen-Sargent robustness, Kullback and Leibler (1951)

divergence (also known as relative entropy) is used to measure the discrepancy between

1We verify the degree of sluggishness using regressions of belief distortions (defined as the difference
between the consensus survey forecast and a model forecast) on past distortions and the state of the economy:

distortiont = constant + β × distortiont−1 + γ × state of the economyt−1 + εt,

where we proxy the state of the economy by inflation or GDP growth. t-Statistics of estimated coefficients for β
range between 5.39 (inflation) and 10.42 (GDP growth).

2See Hansen and Sargent (2008) for a textbook treatment.
3Alternatively, the family of models being considered by the decision-maker can be viewed as the set of non-

unique priors in the max-min expected utility of Gilboa and Schmeidler (1989). Motivated by these authors,
the work of Chen and Epstein (2002), Epstein and Schneider (2003) and related papers offers another approach
to modeling ambiguity aversion in a dynamic setting. Maccheroni, Marinacci, and Rustichini (2006a,b) show
that the framework of variational preferences nests these different approaches. Strzalecki (2011) characterizes
multiplier preferences axiomatically. Most recently, Hansen and Sargent (2020) construct a continuous-time
extension of variational preferences that combines ambiguity aversion in the sense of Chen and Epstein (2002)
with model uncertainty aversion in the sense of Anderson, Hansen, and Sargent (2003).
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Figure 1. Belief Distortions: Difference between Subjective and Objective Beliefs

Notes: This figure plots a proxy for belief distortions for real GDP growth, inflation, and unemployment defined
as the difference between the mean one-year-ahead forecasts from Consensus Economics and corresponding
statistical (objective) forecasts from a VAR(2). Gray shaded bars indicate recessions as defined by the NBER.
Data is quarterly and running from 1995 to 2018.

models. To match the time-variation in belief distortions uncovered in the data, we replace

relative entropy by the family of Cressie and Read (1984) divergences and construct a

discrepancy measure which preserves recursivity and homotheticity.

We summarize our main theoretical contributions as follows. First, while relative

entropy has strong foundations in information theory, econometric theory, and often offers

tractability for dynamic problems, it leads to myopic belief distortions in a setting with i.i.d.

shocks. Belief distortions that are independent of economic shocks and constant over time

are difficult to reconcile with empirical evidence. In our model, Cressie-Read divergences

render the discrepancy measure state-dependent via a unique sentiment state variable that

summarizes past shocks and belief distortions. As a result, even in an environment with i.i.d.

shocks, subjective beliefs change endogenously in response to changes in the economy.

The Cressie-Read family is parameterized by a parameter η and nests relative entropy

as a special case when η tends to unity. Intuitively, the parameter η governs the desire for

intertemporal smoothness of belief distortions. Values of η close to unity indicate a high

desire for intertemporal smoothing for belief distortions, leading to strong sluggishness. As

η moves away from unity, the endogenous dynamics of belief distortions depend on whether

η is greater or smaller than 1. When η < 1, agent’s subjective beliefs display momentum-

like dynamics and become less pessimistic or more optimistic after positive shocks, leading

to procyclical sentiment. For η > 1, agent’s subjective beliefs feature reversal-like dynamics

and turn more pessimistic or less optimistic after positive shocks. Moreover, the volatility of
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sentiment also responds to economic shocks and does so asymmetrically between positive

and negative shocks. When η < 1, pessimistic sentiment volatility shrinks after positive

shocks and increases after negative shocks. The effect is opposite for η > 1.

Second, we examine the implications of the Cressie-Read divergence for portfolio choice

and equilibrium asset pricing. We first characterize the agent’s preferences with Cressie-Read

divergence in the robust control framework of Hansen and Sargent. The state-dependence

of the Cressie-Read divergence produces dynamic risk aversion (a stochastic variance

multiplier in the language of stochastic differential utility à la Duffie and Epstein (1992)). The

elasticity of dynamic risk aversion (the variance multiplier) with respect to the sentiment

state variable is exactly 1 − η. When η < 1, risk aversion is countercyclical, leading to a

procyclical portfolio weight. The opposite result holds for η > 1. The agent’s dynamic belief

distortion also generates intertemporal hedging demands, which grow with the investment

horizon. Moreover, to accommodate optimism as well as pessimism, we embed a model

of optimism inspired by Bhandari, Borovička, and Ho (2019) in a regime-switching setting.

Alternating waves of pessimism and optimism magnify the state-dependence of portfolio

choice.

We further study a general equilibrium model for a representative agent with Epstein

and Zin (1989) preferences and Cressie-Read divergence. To this end, we calibrate our

model from an empirical measure of time-varying pessimism and optimism extracted from

a large cross-section of forecast data on aggregate economic activity. Using GDP survey data

from Consensus Economics, we define a measure of sentiment as the difference between

the one-year ahead consensus forecast and a one-year ahead forecast from a VAR(2). The

calibrated model features rich dynamics and illustrates that time-varying sentiment leads

to equity risk premia and Sharpe ratios that quantitatively match the data. We also explore

the effect of pessimism and optimism separately in the calibrated model and find that

equity premia and volatilities are higher (lower) and risk-free rates are lower (higher) in

states of pessimism (optimism). Monte Carlo simulations reveal that the distributions of

the equilibrium quantities are skewed and heavy-tailed in bad states of nature, reflecting the

higher volatility of beliefs in those states of the world.

Finally, as a theoretical contribution, we show that our construction of the intertemporal

Cressie-Read divergence measure satisfies recursivity and constitutes a recursive ambiguity

index in the sense of Maccheroni, Marinacci, and Rustichini (2006b), thereby guaranteeing

time-consistency of preferences. In addition, we also preserve homotheticity of the resulting

preferences, which benefits the tractability of the approach. We motivate and derive our

definition of the Cressie-Read divergence measure in a discrete-time setting and we prove

that relative entropy is the unique dynamic divergence measure that satisfies recursivity. A

(unique) stochastic scaling factor is introduced for our Cressie-Read divergence measure to

maintain the same recursivity. Interestingly, we find that the stochastic scaling factor that

is instrumental in guaranteeing recursivity and time-consistency is a power function of the

3



sentiment state variable driving the nonlinear dynamics of the model.

Related Literature: Our paper builds on the robust control literature studying pessimistic

subjective beliefs such as Hansen and Sargent (2001), Anderson, Hansen, and Sargent

(2003), and Hansen, Sargent, Turmuhambetova, and Williams (2006), among many others.

Different from this literature, which imposes an entropy penalty, we show that for values

η 6= 1, the Cressie-Read divergence family generates time-varying beliefs and risk aversion.

Moreover, our model calibration shows that time-varying pessimism and optimism induces

rich dynamics in asset prices.

The two papers closest to ours are Bhandari, Borovička, and Ho (2019) and Hansen,

Szőke, Han, and Sargent (2020). Bhandari, Borovička, and Ho (2019) study the effects

of pessimism and optimism on macroeconomic fluctuations in the presence of nominal

rigidities and labor market frictions to address the unemployment volatility puzzle. Our

paper is significantly different from their paper along several dimensions. First, they use

entropy-based robust control and allow for exogenous variation in the strength of the

preference for robustness. We, in contrast, generate dynamic sentiment endogenously.

Second, they build a macroeconomic model with frictions, while we consider frictionless

markets and focus on asset pricing implications. Hansen, Szőke, Han, and Sargent (2020)

construct twisted relative entropy in order to generate countercyclical concerns for model

misspecification and corresponding risk premia. Our specification based on the Cressie-

Read divergence can be seen as an alternative mechanism where these effects are obtained

endogenously and within the framework of Maccheroni, Marinacci, and Rustichini (2006b),

thus satisfying dynamic consistency by construction. Szőke (2019) estimates the model of

Hansen, Szőke, Han, and Sargent (2020) using survey data.

Chamberlain (2020) offers an excellent survey on empirical methods for robust portfolio

choice as an example of econometric issues in decision making. He shows how dynamic

φ−divergence preferences can be used for purposes of sensitivity analysis when an investor

fears misspecification. We complement his analysis by solving explicitly for optimal portfolio

choice and dynamic general equilibrium, as well as calibrating the model based on empirical

estimates of pessimism and optimism from survey data.

On the empirical side, we follow the literature that elicits subjective beliefs from

survey data. For example, Bianchi, Ludvigson, and Ma (2020) compare survey responses

to machine-learning based predictions about macroeconomic quantities and find strong

evidence for time-varying pessimism and optimism in the data. Adam, Matveev, and

Nagel (2021) study different surveys and reject the hypothesis that respondents are always

pessimistically biased towards expected returns as predicted by the Hansen and Sargent

model and argue that they are often optimistic.

Motivated by empirical and experimental evidence on belief formation, a large

literature in behavioral economics and finance proposes models of deviations from rational
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expectations. Prominent examples include diagnostic expectations as, e.g., in Bordalo,

Gennaioli, and Shleifer (2018), Bordalo, Gennaioli, Porta, and Shleifer (2019), and Bordalo,

Gennaioli, Ma, and Shleifer (2020), and extrapolative expectations, see, e.g., Hong and Stein

(1999), Barberis, Greenwood, Jin, and Shleifer (2015), Barberis (2018), Jin and Sui (2019), and

Li and Liu (2019). Our model endogenously generates similar belief dynamics, in the sense

that belief distortions are driven by a state variable that summarizes past belief distortions

and fundamental shocks experienced by the decision-maker. The belief dynamics displays

momentum-like features when the Cressie-Read parameter η is less than 1 and contrarian

behavior when η is larger than 1. While our specification does not introduce the recency

bias documented in the extrapolative expectation literature, it does introduce asymmetric

responses after positive and negative fundamental shocks due to their different impact

on belief volatility. The endogenous response of belief volatility to fundamental shocks

differentiates our model from diagnostic expectations where the diagnostic distribution has

a constant variance in an AR(1) model, see, e.g., Bordalo, Gennaioli, and Shleifer (2018).

Another related strand of the literature studies Cressie-Read divergence measures to

estimate subjective beliefs or stochastic discount factors. For example, Chen, Hansen,

and Hansen (2021) bound the divergence between subjective beliefs and their rational

expectations benchmark using φ−divergences. Similarly, using convex duality, Korsaye,

Trojani, and Quaini (2020) estimate minimum-divergence stochastic discount factors in

markets with frictions. Different from this literature, which does not impose any preference

structure and does not study portfolios in general equilibrium, we derive optimal portfolios

in a Merton (1969) setting and study the effect of time-varying sentiment on equilibrium

quantities.

Our paper is also related to different strands of the literature that study time-varying

beliefs or risk-aversion using alternative mechanisms. For example, Bidder and Dew-Becker

(2016), Collin-Dufresne, Johannes, and Lochstoer (2016), Dew-Becker and Nathanson (2019),

and Kozlowski, Veldkamp, and Venkateswaran (2020), among many others, generate rich

belief dynamics endogenously in asset pricing models with simple fundamentals when

agents are allowed to learn. Asset pricing studies that feature time-varying risk aversion

include the habit models of Constantinides (1990), Detemple and Zapatero (1991), and

Campbell and Cochrane (1999) where time-varying risk aversion is tightly linked to the level

of consumption relative to its recent past history. While in these models time-varying risk

aversion is exogenously imposed on the utility function of the representative agent, in our

setting, stochastic risk aversion arises endogenously due to the agent’s concern for model

misspecification.

Outline of the paper: The rest of the paper is organized as follows. Section 1 provides

the theoretical framework and studies the robust utility index. Section 2 examines the

partial equilibrium portfolio problem. Section 3 develops a general equilibrium model with
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an Epstein and Zin (1989) representative agent with Cressie-Read divergence. Section 4

estimates empirical proxies of time-varying sentiment that we use in Section 5 for model

calibration. Finally, Section 6 concludes. To save space, we collect all proofs and further

technical details in a separate appendix.

1 The Model

1.1 The Cressie-Read Divergence

We first motivate our definition of the Cressie-Read divergence in a discrete-time setting.

Consider a state process y whose dynamics under the baseline model B and an alternative

model U follow

yt+∆t = Ayt + σ
√

∆tεBt and yt+∆t = Ayt + σ
(√

∆tεUt − ut∆t
)
,

respectively, where t = m∆t with m = 0, 1, 2, . . . , A, σ are constants, and {εBt } and {εUt } are

i.i.d. standard normal noise. The alternative model U is parameterized by a process u, which

we call the belief distortion. For a positive ut, the mean of yt+∆t conditioning on yt is σut∆t

less under U than under B, hence, the agent is pessimistic under the alternative model U.

The likelihood ratio of the distribution for yt between U and B is Zt =
∏t

s=∆tNs, where Z0 = 1

and Nt+∆t = e−
√

∆tutεBt−
1
2
u2
t∆t is the likelihood ratio of the conditional distribution for yt+∆t|yt

between U and B.

Given a divergence function φ, convex and with φ(1) = 0, φ(Zt) describes the discrepancy

between U and B on Ft. We introduce the φ-divergence as

RU = EB
[∑∞

t=0β
t
(
φ(Zt+∆t)− φ(Zt)

)]
, (1)

where β is the agent’s subjective discounting factor and φ(Zt+∆t) − φ(Zt) measures the

increment of the discrepancy from time t to t + ∆t.4 Using a second-order Taylor expansion

and Girsanov theorem, we obtain

RU = 1
2
EB
[∑∞

t=0β
tφ′′(Zt)Z

2
t u

2
t∆t
]

+ o(∆t) = 1
2
EU
[∑∞

t=0β
tφ′′(Zt)Ztu

2
t∆t
]

+ o(∆t). (2)

Time consistency. The φ-divergence in (2) is evaluated at time 0. Its (conditional) value at

time t can be similarly defined to measure the conditional discrepancy from time t onward:

RU
t = 1

2
EU
t

[∑∞
s=tβ

s−tφ′′(Zt,s)Zt,su
2
s∆t
]

+ o(∆t), (3)

4Equation (1) shows that it is without loss of generality to restrict alternative models U to be absolutely
continuous with respect to B, otherwise, both Zt and φ(Zt) could be infinite with positive probability, in which
case RU would be ill-defined. Note that because absolute continuity requires fixing σ in the continuous-time
model below, we already impose the same restriction in the discrete-time setting here.
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where EB
t [·] is the conditional expectation and Zt,s = Zs/Zt is the conditional likelihood ratio.

To ensure time consistency of the optimization problem considered later, we need the φ-

divergence process {RU
t } to be recursive:

RU
0 = 1

2
EU
[∑t−1

s=0β
sφ′′(Zs)Zsu

2
s∆t
]

+ EU
[
βtRU

t

]
+ o(∆t). (4)

However, this property does not automatically hold unless φ satisfies φ′′(Z)Z = constant,

which uniquely pins down φ as the Kullback and Leibler (1951) divergence (relative entropy).

In this case,

RU
t = EU

t

[
1
2

∑∞
s=tβ

s−tu2
s∆t
]

+ o(∆t),

which is the entropy divergence introduced by Hansen and Sargent (2001). Therefore the

entropy divergence is the unique dynamic divergence satisfying (4).

For a general φ, in order to maintain (4), we need to extend the definition in (3) by

introducing a scaling factor Φt:

RU
t = 1

2Φt
EU
[∑∞

s=tβ
s−tφ′′(Zt,s)Zt,su

2
s∆t
]

+ o(∆t). (5)

In this paper, we consider φ belonging to the family of Cressie and Read (1984) divergences:

φ(z) =
1− η + ηz − zη

η(1− η)
, η ∈ R \ {0, 1}.5 (6)

The function φ is convex, satisfies φ(1) = 0, is decreasing when z ∈ (0, 1), and increasing when

z > 1.6 Note that the Cressie-Read divergence family includes several well-known divergence

functions: with η = 1 being the KL divergence, η = 0 is known as Burg (1972) entropy,

η = 1/2 corresponds to the Hellinger (1909) distance, and η = 2 describes the modified χ2-

divergence.

For a Cressie-Read divergence function φ, the unique choice of Φt that ensures the

recursivity property (4) to be satisfied by {RU
t } in (5), is

Φt = Z1−η
t . (7)

It immediately follows that 1
Φt
φ′′(Zt,s)Zt,s = Zη−1

s , and hence,

RU
t = 1

2
EU
t

[∑∞
s=tβ

s−tZη−1
s u2

s∆t
]

+ o(∆t). (8)

Theorem 2 in Maccheroni, Marinacci, and Rustichini (2006b) implies that our construction

5For η ∈ {0, 1}, the function φ(z) is defined as the corresponding limit.
6The affine component in φ does not impact our discrepancy measure. Rather it ensures positivity of φ and

φ(1) = 0 for any η. Because of the affine component our specification avoids the monotonically decreasing cases
of other Cressie-Read parameterizations, see Chen, Hansen, and Hansen (2020). Furthermore, our objective
function and optimization problem are entirely different from theirs.
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of RU yields a recursive ambiguity index which leads to time consistency of preferences.

Notice that the scaling factor Φ in (7) is instrumental in guaranteeing recursivity and time-

consistency and leads to the state-dependent weight Zη−1
s before u2

s in (8) that drives the

nonlinear dynamics of the model.

Continuous-time limit. Motivated by the discrete-time example, we work with a

continuous-time setting in the rest of the paper. Let (Ω, (Ft)t∈[0,T ],B) be a standard probability

space and BB is a d-dimensional Brownian motion. Probability measure B is the agent’s

baseline model and a family of alternative models U is parameterized by a Rd-valued

bounded belief distortion process u. For each given bounded u, U is defined as

dU
dB

∣∣∣
FT

= ZT ,
7 where Zt = exp

(
−
∫ t

0

1
2
|us|2ds−

∫ t

0

u′sdB
B
s

)
, t ∈ [0, T ], (9)

and u′ is the transpose of u. For every random outcome ω ∈ Ω, the density ZT (w) describes

the change of measure for this outcome under U compared to B. Larger Z(ω) implies more

weight is put on ω under the alternative model U. Denote Zt,s = Zs/Zt for any 0 ≤ t ≤ s ≤ T

as the conditional density. Conditional probabilities are determined via Bayes’ formula.8

Following the motivation from the discrete-time example, we introduce the following

(conditional) Cressie-Read divergence to measure the discrepancy between U and B on [t, T ]:

RU
t =

1

Φt

EB
t

[ ∫ T

t

e−δ(s−t)ΨsdDt,s

]
, (10)

where δ is a constant subjective discount rate and Dt,s = φ(Zt,s) measures the realized

divergence between U and B on [t, s], and Φ is the scaling factor ensuring the recursivity of

{RU
t }. Extending the discrete-time definition, we introduce a positive stochastic weight Ψ in

(10) to ensure optimization problems considered later remain homothetic.

When Φ is chosen as (7), Lemma 1 in Appendix B shows that RU in (10) is transformed to

RU
t =

1

2
EU
t

[ ∫ T

t

e−δ(s−t)ΨsZ
η−1
s |us|2ds

]
(11)

and is recursive. Equation (11) underscores three important implications for the dynamics of

subjective beliefs. First, it is immediate to see that in the entropy case, i.e., when η = 1, the

divergence measure simply integrates the discounted squared belief distortions u. Second,

when η 6= 1, the Cressie-Read divergence introduces a weight Zη−1. Recall from (9) that Z is

state-dependent: it not only reflects the history of belief distortions u but also the realizations

of the Brownian shocks BB. Therefore, Z can be seen as the cumulative belief distortion,

which aggregates different belief distortions and Brownian shocks across time and across

7Because u is bounded, EB[ZT ] = 1, therefore U is a probability measure equivalent to B.
8For an event A ∈ Fs,PU(A|Ft) = EB

t [Zt,s1A], for any t ≤ s. Here 1A(ω) = 1 if ω ∈ A, 0 otherwise, is the
indicator for A.

8



states. We call Z the sentiment state variable. In the optimization problems considered later,

Z is the crucial state variable that links the agent’s future belief distortion to historic ones.

This feature allows us to capture the sluggishness in belief distortions documented in Figure

1. Third, because the Cressie-Read divergence in (11) uses a power of Z, Zη−1, as a weight for

|u|2, states with larger values of Zη−1, for a given value of u, contribute more to the Cressie-

Read divergence {RU
t } than states with smaller values of Zη−1. This implies that deviating

from B on states with larger values of Zη−1 is more costly. Intuitively, we can think of the

Cressie-Read divergence as an extended entropy divergence with a dynamic belief- and state-

dependent weight Zη−1, which depends endogenously on the past distortion u. As shown

later, this mechanism is key to generate endogenous and dynamic beliefs and sentiment.

In particular, when η < 1, the agent’s sentiment improves (she is less pessimistic or more

optimistic) as fundamentals improve, and vice versa for η > 1.

Before moving to the agent’s utility, we present a technical modification of equation

(11), which helps pin down boundary conditions for our numerical analysis for portfolio

choice and general equilibrium problems studied later. More specifically, we consider an

approximation of (11)

RU
t =

1

2
EU
t

[ ∫ T

t

e−δ(s−t)ΨsZ
η−1
s∧τ |us|2ds

]
, (12)

where τ = inf{t ≥ 0 : Zt ≤ z or Zt ≥ z}, with constants 0 < z < z. The interval [z, z] contains

all plausible adjustments, so that Z < z (Z > z) is regarded as unreasonably underweighted

(overweighted) in our model. The constant z (resp. z) is fixed to be sufficiently close to zero

(resp. large) so that only extreme weights are excluded and the probability of τ < T can be

made arbitrarily small. When t > τ , the weight is frozen at Zη−1
τ and RU

t can be viewed as an

entropy divergence.

1.2 The Utility Index with Pessimism and Optimism

The main mechanism behind the dynamic and state-dependent subjective beliefs driving

the key results in our paper can be understood from an analysis of the utility index process.

To this end, we first consider pessimism and optimism separately, and then build a regime-

switching model combining both.

Pessimism: To model pessimism, we fix a parameter θP > 0, which measures the strength of

the preference for robustness. Consider a consumption stream c and a utility function U . We

then define a utility index UP,c as the pessimistic utility for c:

UP,ct = inf
u
EU
t

[ ∫ T

t

e−δ(s−t)δU(cs)ds+ e−δ(T−t)εU(cT ) +
1

θP
RU
t

]
, (13)

where εU , with a positive constant ε, is the bequest utility and {RU
t } is given in equation (12).

The utility index is the minimal value among utilities under a family of alternative models
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U, indexed by the belief distortion u. The minimization with respect to u addresses the

agent’s concern for model misspecification. The minimizer u∗ is called the worst-case belief

distortion. Under its associated subjective beliefs, the expected utility of c is so low that even

after addingRU
t /θ

P , it still achieves the minimal value on the right-hand side of equation (13).

The role of {RU
t } is to constrain the choice of u by penalizing distortions that are too large and

deemed unreasonable.

To understand the intuition of problem (13), let us consider an example where c follows
dct
ct

= µcdt + σ′cdB
B
t for a constant µc and a constant vector σc. Because (12) indicates that RU

depends on the state Z when η 6= 1, we consider UP,c as a function of the state variables c and

Z, i.e., UP,ct = U(t, ct, Zt) for some function U . The dynamic programming principle implies

that u∗ satisfies

u∗t =
θPΓt[1 + Et]

Ψt

Z1−η
t∧τ ,

9 (14)

where Γt = ∂ZU(−Zu∗) + ∂cU(cσc) is the instantaneous volatility of the pessimistic utility UP,c

and Et = Zt
Γt
∂ZΓt (with the division calculated component-wise) is the elasticity of Γt with

respect to Zt.

When η 6= 1, the choice of u impacts the dynamics of Z, which in turn affects the value

of UP,c and its volatility. Therefore, the optimization takes into account the utility volatility

Γ and its sensitivity E with respect to Z in determining the worst-case belief in (14). In the

entropy case, with η = 1, U and Γ are independent of Z, hence E ≡ 0 and u∗ = θPΓt
Ψt

. The

belief distortion for η 6= 1 involves two important additional factors, both of which reflect

the endogenous sentiment state variable Z in (12). The direct effect of Z on the optimal

belief distortion u∗ in (14) is nonlinear and depends on the Cressie-Read parameter η 6= 1, as

discussed below. In addition, the indirect effect throughE acknowledges that Z also impacts

the utility volatility Γ.

More generally, when c is non-Markovian, the characterization in (14) remains valid,

and is presented in Lemma 2 of the Online Appendix. In this case, problem (13) can be

characterized by a Forward Backward Stochastic Differential equation (FBSDE), where the

forward component describes the dynamics of Z, the backward component represents the

optimization problem (13), and the two components are coupled via u∗. This extends

the framework of stochastic differential utility of Duffie and Epstein (1992) as well as the

generalized stochastic differential utility introduced in Lazrak and Quenez (2003), which

are characterized as BSDEs. In addition to the technical complications stemming from the

presence of the forward componentZ, the extension is important from an economic point of

9The drift of the process e−δtZtU(t, ct, Zt) +
∫ t
0
e−δsZs

[
δU(cs) + 1

2θP
ΨsZ

η−1
s∧τ |us|2

]
ds, divided throughout by

e−δtZt, contains the following terms depending on u:

1
2∂

2
ZZU(−Ztut)2 + ∂2ZcU(−Ztut)(ctσc)− ut

[
∂ZU(−Ztut) + ∂cU(ctσc)

]
+ 1

2θP
ΨtZ

η−1
t |ut|2.

The minimization problem over u in (13) and the dynamic programming principle imply that u∗ minimizes the
previous expression. Then the first-order condition in u yields (14).
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view, since the endogenous forward component is precisely the mechanism that generates

dynamic belief distortions endogenously.10

Using the worst-case belief distortion u∗ in (14), we obtain the following representation

for the pessimistic utility UP,c:

UP,ct = EB
t

[
e−δ(T−t)εU(cT )+

∫ T

t

e−δ(s−t)δU(cs) ds−
∫ T

t

e−δ(s−t)
θP

2Ψs

Z1−η
s∧τ |Γs|2

(
1−|Es|2

)
ds
]
. (15)

A heuristic way of understanding the economic mechanism of this representation builds

on the analysis of Duffie and Epstein (1992). In their terminology, utility variance enters

the utility index as a penalty. In (15), the penalty is determined by applying the variance

multiplier θP

2Ψ
Z1−η to the variance of the utility index |Γ|2 adjusted by the squared elasticity

of the utility volatility |E|2. The dependence of the variance multiplier on Z captures the

endogenous change in risk aversion due to distorted beliefs.11 The weight factor Z1−η

introduces belief- and state-dependence in the variance multiplier, which distinguishes it

from the standard entropy case. Note that the elasticity of the variance multiplier with respect

toZ is exactly 1−η. Therefore 1−ηmeasures the elasticity of state-dependence in the variance

multiplier. To build intuition, we discuss the properties of UP,c in the following Proposition.

Proposition 1 (Pessimistic utility).

1. A component of u∗ is positive if and only if the corresponding component of Γ[1 + E] is

positive. For a fixed and positive Γ[1+E], all components of u∗ increase as Z1−η increases.

2. When a component of u∗ is positive, positive shocks to the corresponding component in

BB decrease Z, hence decrease Z1−η when η < 1, or increase Z1−η when η > 1.

The first result shows that the agent is pessimistic in the worst-case belief compared to the

reference belief. To see this most easily, we focus on a one-dimensional case, i.e., d = 1. The

utility volatility Γ can be interpreted as the sensitivity of UP,c with respect to the fundamental

shocks dBB. From the first result it follows that when Γ[1 + E] is positive, as is shown in

our applications later, the worst-case belief distortion u∗ is positive as well. Under U, dBB
t =

−u∗tdt + dBU
t where BU is a Brownian motion under U. Therefore, the expected growth of BB

under U is underestimated relative to the growth under B, i.e., the agent is pessimistic under

U.

The second result explains how shocks affect the belief distortion, which in turn impacts

the variance multiplier, risk aversion, and belief volatility. Importantly, the effect crucially

hinges on whether η is greater than or smaller than 1. Let us first consider η < 1.

10When either η = 1 or when Z is an exogenous state variable whose dynamics do not depend on u, then the
utility index UP,c is a generalized stochastic differential utility, characterized by a BSDE. When η 6= 1, UP,c is
characterized by a FBSDE.

11The risk aversion captured by the variance multiplier is in addition to any risk aversion already encoded in
U(c), or more generally, in the terminology of Duffie and Epstein (1992), its “aggregator.”
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Positive fundamental shocks to BB decrease Z1−η due to the second result in Proposition

1. This decreases the variance multiplier θP

2Ψ
Z1−η, thereby lowering the agent’s risk aversion.

Moreover, by the first result, the worst-case belief distortion u∗ decreases as Z1−η decreases,

making the agent less pessimistic following positive fundamental shocks. Furthermore, from

(9), we see that u∗ is also the volatility of the logarithm of the state variable Z. Therefore,

positive fundamental shocks reduce the volatility of log(Z) and make the state variable

temporarily less sensitive to future fundamental shocks. By the same intuition, negative

fundamental shocks to BB exacerbate the agent’s pessimism and also increase the volatility

of log(Z). As a result, the state variable becomes temporarily more sensitive to future

fundamental shocks. The asymmetric response after positive and negative fundamental

shocks is the key mechanism to generate skewness in equilibrium quantities later.

In contrast, when η > 1, the previous results are reversed. Positive fundamental shocks to

BB increase Z1−η, hence increase u∗, i.e., the agent becomes more pessimistic, while negative

fundamental shocks tend to reduce pessimism.

In summary, the agent chooses future belief distortions based on the current Z, which

is a sufficient statistic of past belief distortions and fundamental shocks experienced. The

pessimistic utility exhibits countercyclical risk aversion, pessimism, and volatility of beliefs

when η < 1, while η > 1 delivers procyclicality. Table 1 summarizes these results.

Table 1. Responses to Fundamental ShocksBB in Case of Pessimism

∆BB Optimal
Distortion

Risk Aversion Sentiment
Volatility

Sentiment

η < 1

positive ↓ ↓ less pessimistic ↓
negative ↑ ↑ more pessimistic ↑

η > 1

positive ↑ ↑ more pessimistic ↑
negative ↓ ↓ less pessimistic ↓

Another way of understanding the intuition for our results is to view the Cressie-Read

penalty function as reflecting a preference of Nature (the fictitious malevolent agent in the

max-min expected utility interpretation) for intertemporal smoothing of the process for the

belief distortions u∗. The closer η is to 1, the stronger the preference for intertemporal

smoothing, and the more inelastic the variance multiplier is with respect to changes in the

sentiment state variable. As η moves away from unity, the belief distortions are more dynamic

and the sign of the elasticity of the variance multiplier depends on whether η is greater than

or smaller than 1. When η < 1, the decision-maker expects more adverse distortions from

Nature in bad times and less adverse distortions in good times; the agent’s subjective beliefs

12



therefore exhibit “momentum-like” dynamics, and pessimism gets worse in bad times, while

beliefs improve following positive shocks.

In contrast, when η > 1, the agent expects less adverse distortions in bad times and

more adverse distortions following positive shocks. The agent could be seen as thinking

that “lightning never strikes twice” after an adverse shock, i.e., if Nature has just used its

ammunition in hitting the agent with a negative shock, it will not do so again immediately.

Put differently, now the agent’s subjective beliefs exhibit reversal-like dynamics.

Optimism: We model optimism in an analogous way to Bhandari, Borovička, and Ho (2019)

by considering a constant θO < 0. The optimistic utility UO,c for the consumption stream c is

defined as

UO,ct = sup
u

EU
t

[ ∫ T

t

e−δ(s−t)δU(cs)ds+ e−δ(T−t)εU(cT ) +
1

θO
RU
t

]
. (16)

The maximization represents the agent’s desire to explore the best-case scenario and the

maximizer u∗ is called the best-case belief distortion. Under U, the expected utility of c is

so high that, even after penalizing by RU
t /θ

O with θO < 0, it still achieves the maximal value

on the right-hand side of (16). As in the case of pessimism, {RU
t } continues to penalize belief

distortions that are deemed unreasonable.

The characterization of the optimal belief distortion u∗ in (14) still holds, with θP replaced

by θO. Therefore, when Γ[1+E] is positive in a component (as is the case in applications later),

the best-case belief distortion u∗ is negative in the same component, due to the negativity of

θO. As a result, the Brownian motionBB, which follows the dynamicsBB
t = −u∗tdt+dBU

t under

U, has higher expected growth under U than under B, i.e., the best-case belief U is optimistic

relative to the reference belief B. We rewrite equation (15) as follows

UO,ct = EB
t

[
e−δ(T−t)εU(cT )+

∫ T

t

e−δ(s−t)δU(cs) ds−
∫ T

t

e−δ(s−t)
θO

2Ψs

Z1−η
s∧τ |Γs|2

(
1−|Es|2

)
ds
]
, (17)

where the variance multiplier θO

2Ψ
Z1−η is negative and indicates risk-seeking behavior.12 The

third term on the right-hand side of (17), with a negative variance multiplier, represents the

premium or reward the agent adds to the expected utility due to optimism.13

We can now state the results of Proposition 1 for the optimistic case.

Proposition 2 (Optimistic utility).

1. A component of u∗ is negative if and only if the corresponding component of Γ[1 + E] is

12As before, the attitude towards risk expressed by the variance multiplier ought to be viewed in combination
with the risk aversion already encoded in U(c). In the case of optimism, the risk-seeking attitude acts to reduce
overall risk aversion. For exposition purposes we find it useful to refer to the risk-seeking attitude injected
by the variance multiplier as being uncertainty-seeking, while still referring to the overall combined effect as
concerning risk aversion.

13Heath and Tversky (1991) provide experimental evidence that agents prefer to bet on more ambiguous
events when they consider themselves knowledgeable, moreover, they even pay a significant premium to bet
on their judgements.
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positive. For a fixed and positive Γ[1+E], all components of u∗ decrease asZ1−η increases.

2. When a component of u∗ is negative, positive shocks to the corresponding component in

BB increase Z, hence, increase Z1−η when η < 1, or decrease Z1−η when η > 1.

The first result shows that the agent is more optimistic in the best-case belief than the

reference belief. Moreover, the dynamics of optimism, risk attitude, and belief volatility

follow from combining the two results above. When η < 1, positive fundamental shocks to

BB make the best-case belief distortion u∗ even more negative, i.e., optimism becomes more

pronounced, the agent becomes more uncertainty-seeking (and as a result less overall risk-

averse), and volatility of the logarithm ofZ increases as well. As with pessimism, these results

are reversed for η > 1.

1.3 A Regime-Switching Model between Pessimism and Optimism

In the previous section, while the degree of pessimism or optimism in the agent’s beliefs

depends dynamically on Z1−η, the agent is either optimistic or pessimistic. To allow for both

sentiment states to be present, we introduce a regime-switching model in which the agent

changes between optimism and pessimism dynamically. The idea is that when the agent

feels less pessimistic, she is more likely to switch to the optimistic state; conversely, when the

agent feels less optimistic, she is more likely to switch back to the pessimistic state. In other

words, the intensities of switching between states also depend on the state variable Z.

To this end, let I be a process taking values in {O,P} indicating whether the agent is in

the optimistic or pessimistic state. Let ν = inf{s ≥ t : Is 6= It}, i.e., the first time when the

agent switches between optimism and pessimism after time t. Given a consumption stream

c, we introduce agent’s utility index conditional on the state. For the pessimistic utility,

V P,c
t = inf

u
EU
t

[ ∫ T∧ν

t

e−δ(s−t)
(
δU(cs) +

1

2θP
ΨsZ

η−1
s∧τ |us|2

)
ds+ e−δ(T−t)εU(cT ) 1{ν>T}

+ e−δ(ν−t)V O,c
ν 1{ν≤T}

]
. (18)

In the previous equation, V P,c
t is the agent’s utility at time t, if the agent is pessimistic at

time t. It equals the minimization on the right-hand side, which incorporates the discounted

intertemporal utility, the Cressie-Read penalty, and the discounted bequest utility if the agent

remains pessimistic until the terminal time, or the discounted optimistic utility V O,c
ν if the

agent switches to optimism before the terminal time. When the agent is optimistic at time t,

V O,c
t can be defined similarly with V O,c and V P,c swapped in (18), θP replaced by θO, and the

infimum over u changed to supremum.

We model I as a continuous-time Markov chain, independent of BB, with transition
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intensity λO from the state P to O, and the intensity λP from O back to P . We assume

λOt = ΛO(Z1−η
t ) and λPt = ΛP (Z1−η

t ), (19)

for two decreasing functions ΛO and ΛP . Therefore the transition intensities depend on Z1−η,

i.e., the same state variable driving the agent’s local belief distortion in the optimistic and

pessimistic state as described in the previous subsection.

To build intuition, we focus on the η < 1 case. Suppose the agent starts in the pessimistic

state. Negative fundamental shocks to BB increase the value of Z1−η, hence, the agent

becomes more pessimistic. Meanwhile, because ΛO is a decreasing function, the transition

intensity λO to the optimistic state decreases. Therefore the agent is less likely to become

optimistic after bad fundamental shocks. On the other hand, positive fundamental shocks

decrease the value of Z1−η, hence, the agent is less pessimistic. At the same time, the

transition intensity λO to the optimistic state increases. Consequently, the agent becomes

increasingly likely to switch to the optimistic state after experiencing positive fundamental

shocks. Once the agent switches to the optimistic state, continuing positive fundamental

shocks increaseZ1−η and the agent becomes more optimistic. At the same time, the transition

intensity λP decreases, so that the likelihood to switch back to the pessimistic state shrinks.

In summary, in our regime-switching model, the agent’s beliefs are dynamic and

endogenously driven by a power function of the agent’s cumulative distorted belief Z, which

summarizes the agent’s past belief distortion and history of fundamental shocks.

2 Portfolio Choice

We now have all the ingredients to study the implications of time-varying sentiment on asset

prices. Before focussing on asset prices in equilibrium, however, we build intuition in a

partial equilibrium setting in the context of optimal portfolio choice.

2.1 The Consumption and Portfolio Choice Problem

Consider a capital market with a risk-free bond with a constant interest rate r and d risky

assets whose prices follow

dSt = diag(St)(µdt+ σdBB
t ),

where µ is a constant d-dimensional vector representing expected returns, σ is a constant

d×d-matrix describing the return volatilities, and diag(S) is a d-dimensional diagonal matrix

with diagonal elements {S1, . . . , Sd}. The agent invests her wealth in the risky assets based

on a vector of portfolio weights π and consumes at a rate c. The dynamics of wealth follow

dWt =
[
rWt +Wtπ

′
t(µ− r)− ct

]
dt+Wtπ

′
tσdB

B
t . (20)
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Depending on the initial sentiment state, the agent’s optimal portfolio choice problem is

V O
0 = sup

π,c
V O,c

0 or V P
0 = sup

π,c
V P,c

0 . (21)

The agent’s optimal consumption and investment strategies are shown to depend on her

sentiment state. Problem (21) can also be formulated at time t ∈ [0, T ]. We denote their

optimal values by V O
t and V P

t , respectively.

In (21), we choose CRRA utility U(c) = c1−γ

1−γ with coefficient of relative risk aversion 0 <

γ 6= 1 for both intertemporal and bequest utilities.14 To maintain homotheticity of problem

(21), we follow Maenhout (2004) and choose Ψ in (18) and its optimistic analogue as follows:

Ψt = (1− γ)V P
t , if It = P or Ψt = (1− γ)V O

t , if It = O. (22)

Take the pessimistic state for example, combining equations (18) and (22) yields

V P
t = sup

π,c
inf
u
EU
t

[ ∫ T∧ν

t

e−δ(s−t)
(
δU(cs) +

1− γ
2θP

V P
s Z

η−1
s∧τ |us|2

)
ds+ e−δ(T−t)εU(cT ) 1{ν>T}

+ e−δ(ν−t)V O
ν 1{ν≤T}

]
.

Because the value V P shows up on both sides of the previous problem, it can be considered

as an optimization problem for a (generalized) stochastic differential utility.

2.2 A Two-Stage Example

To understand the impact of the Cressie-Read divergence on the agent’s portfolio choice, we

now consider a simplified two-stage problem. We simplify the model in two ways. First, we

focus on pessimism and rule out optimism. At the end of this subsection, we then explain

the impact of optimism and regime-switching. Second, throughout this two-stage example,

we freeze the state variable Z as follows. Stage 1 starts from time 0 and ends at time 1, stage 2

starts from time 1 until∞. In both stages, Z is frozen and only updated once, namely at time

1, i.e., Zt = Z0 when t ∈ [0, 1); Zt = Z1 when t ≥ 1. To simplify further, we consider the case of

one risky asset, i.e., d = 1. We also set z = 0 and z =∞ so that τ =∞. We solve the two-stage

problem by backward induction.

Second Stage: In the second stage, the agent’s optimal consumption and investment

problem is

V P
t = sup

π,c
inf
u
EU
t

[ ∫ ∞
t

e−δ(s−t)
(
δU(cs) +

1− γ
2θP

V P
s Z

η−1
1 |us|2

)
ds
]
, t ≥ 1, (23)

14The case of log utility is discussed in Appendix C.
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subject to (20). Notice that the agent does not update her cumulative belief distortion Z after

time 1. Therefore, problem (23) is equivalent to Maenhout (2004) for an entropy penalty, but

with robustness preference parameter θPZ1−η
1 instead of θP . The optimal portfolio weight

and the worst-case belief distortion are therefore

πt =
µ− r
σ2

1

γ + θPZ1−η
1

and ut =
µ− r
σ

θPZ1−η
1

γ + θPZ1−η
1

, t ≥ 1. (24)

It follows from equation (24) that the agent’s effective risk aversion is γ + θPZ1−η
1 , where Z1 =

exp(−1
2
|u0|2 − u0B

B
1 ). We can now study the effects of η on the agent’s risk aversion.

Let η < 1 and u0 > 0.15 After positive return shocks to BB
1 , Z1 decreases, and as a result the

agent’s effective risk aversion γ + θPZ1−η
1 decreases as well (due to η < 1), which increases

the agent’s optimal portfolio weight π in the second stage. Meanwhile, the agent’s belief

distortion u decreases, generating a less pessimistic expected return µ− σu under the worst-

case subjective belief U. In summary, after favorable return shocks in the first stage, the agent

becomes less pessimistic and less risk-averse. Negative return shocks lead to the opposite:

the investor becomes more pessimistic and more risk-averse.

Under sufficiently good market conditions, Z1−η
1 tends to z1−η = 0. The agent’s effective

risk aversion gets close to its minimal value γ and the optimal u collapses to 0. This implies

that the agent is no longer pessimistic in the limit. This can also be seen from equation

(23) where the Cressie-Read penalty becomes extremely large for nonzero u, due to the large

weight Zη−1
1 , so that it is very costly for the agent to deviate from the reference measure B.

Under very unfavorable market conditions, Z1−η
1 explodes to infinity, resulting in an infinitely

risk-averse investor who shuns the risky asset. In this case, u = µ−r
σ

, which leads to a zero

equity risk premium under the agent’s extremely pessimistic subjective view.

When η > 1, however, the agent’s effective risk aversion γ+θPZ1−η
1 increases after positive

return shocks, with the investor reducing her portfolio weight in the risky asset. Meanwhile,

u increases and the agent becomes more pessimistic after positive return shocks.

First Stage: Because the agent’s optimal strategies in the second stage depend on the

realization of Z1, it is reflected in the value function V P
1 at time 1.16 The agent’s problem

in the first stage can now be written as

V P
0 = sup

π,c
inf
u
EU
[ ∫ 1

0

e−δt
(
δu(ct) +

1− γ
2θP

V P
t Z

η−1
0 |ut|2

)
dt+ e−δV P

1

]
. (25)

Here Zη−1
0 = 1 and the continuation utility at time 1 is state-dependent, making the problem

(25) state-dependent as well. The agent has an intertemporal hedging demand in the first

stage against the (perceived) market condition fluctuation due to her changing belief at time

15We verify the latter condition numerically in the fully dynamic model in the next section.
16More specifically, V P1 = W 1−γ

1−γ e
fP1 (Z1) with fP1 (Z1) = γ log(γδ

1
γ )− γ log

(
δ + (γ − 1)r + γ−1

2
(µ−r)2
σ2

1

γ+θPZ1−η
1

)
.
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1. When η = 1, the continuation utility is state-independent, and problem (25) is equivalent

to a problem with an entropy penalty where the optimal strategy is myopic.

Combining Optimism with Pessimism: We now discuss how to introduce optimism and

regime-switching in the two-stage model. In the two-stage model, it is natural to assume that

the transition between the optimistic and pessimistic states can only happen at time 1. If the

agent starts with a pessimistic belief in stage 1, there is a probability pP1 = exp(−ΛO(Z1−η
1 ))

to remain pessimistic in the second stage. When η < 1, positive return shocks in the first

stage decrease pP1 . Hence the agent is more likely to be optimistic in the second stage. If the

agent starts with an optimistic belief, there is a probability pO1 = exp(−ΛP (Z1−η
1 )) she remains

optimistic in stage 2. In this case, positive return shocks increase pO1 when η < 1, making the

agent less likely to switch to pessimism in the second stage.

Allowing for optimism requires 0 < z < z <∞ andZ1 to be truncated by z or z. If the agent

is optimistic in the second stage, her optimization problem in the second stage is similar to

(23) with V P and θP replaced by V O and θO, respectively, and the infimum in u is replaced by

supremum. In this case, the optimal portfolio weight and the worst case belief distortion are

πt =
µ− r
σ2

1

γ + θOZ1−η
1

and ut =
µ− r
σ

θOZ1−η
1

γ + θOZ1−η
1

, t ≥ 1. (26)

Recall that θO < 0. To ensure the agent is still effectively risk averse, we need γ + θOz1−η > 0

when η < 1, or γ + θOz1−η > 0 when η > 1. Without this condition, the portfolio choice

problem is ill-posed for the optimistic agent.

If the agent starts with a pessimistic belief in the first stage, but switches to the optimistic

state at time 1, comparing (24) and (26) shows that her effective risk aversion shrinks to γ +

θOZ1−η
1 , which is less than her effective risk aversion γ+θPZ1−η

1 had she remained pessimistic

in the second stage, because θO < 0 < θP . Therefore, after switching to the optimistic state,

the agent invests more in the risky asset. In addition, switching from pessimism to optimism

changes u from positive to negative.

If the agent starts with an optimistic belief in the first stage, i.e., u0 < 0, and remains

optimistic in the second stage, positive return shocks to BB
1 increases Z1−η

1 , when η < 1.

Hence agent’s effective risk aversion decreases (due to θO < 0), the risky investment increases,

the belief distortion u becomes more negative, and the agent becomes more optimistic. In

sufficiently good market conditions, Z1−η
1 reaches z1−η, the agent’s effective risk aversion

attains its minimal value γ + θOz1−η, and the agent becomes extremely optimistic. In

extremely bad market conditions, if the agent still remains optimistic, the optimal u is close

to 0 when Z1−η
1 reaches z1−η. However, recall that it is more likely that the agent has already

switched to the pessimistic state as Z1−η
1 approaches z1−η.
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The full stage 1 problem for the agent starting with a pessimistic belief is

V P
0 = sup

π,c
inf
u
EU
[ ∫ 1

0

e−δt
(
δu(ct) +

1− γ
2θP

V P
t Z

η−1
0 |ut|2

)
dt+ e−δpP1 V

P
1 + e−δ(1− pP1 )V O

1

]
, (27)

where V O
1 = W 1−γ

1−γ e
fO1 (Z1) and fO1 has a similar expression as fP1 with θP replaced by θO in

footnote 16. The intuition gained from this two-stage model survives in the fully dynamic

model developed in the next subsection.

2.3 Dynamic Optimal Consumption and Portfolio Choice

We can now solve for optimal consumption and portfolio choice. As illustrated by the

two-stage example, Z is the central state variable that determines the agent’s optimization

problem in (21). For ease of exposition, in the following, we take a monotone transformation

xt = logZt. (28)

We call x the market sentiment variable and take it as the state variable for problem (21). It

measures the discrepancy between the agent’s belief and the baseline belief B, and therefore

also the strength of sentiment. In the optimistic state, because u∗ is negative, positive return

shocks to BB increase x, the agent becomes more optimistic, and the best-case belief moves

further away from B when η < 1. In the pessimistic state, due to u∗ being positive, negative

return shocks increase x, making the agent more pessimistic and the worst-case belief moves

further away from B when η < 1.

We choose the function Ψ as in (22) such that it ensures the following homothetic

decomposition of the optimal value functions

V P
t =

W 1−γ
t

1− γ
ef

P (t,xt) and V O
t =

W 1−γ
t

1− γ
ef

O(t,xt). (29)

We can now obtain the Hamilton-Jacobi-Bellman (HJB) equations satisfied by fP and

fO using dynamic programming and summarize the agent’s optimal investment and

consumption strategies in the following Proposition.

Proposition 3. Functions fP and fO satisfy a system of HJB equations specified in Proposition

6 in Appendix A. Denote Σ = σσ′ and

γeff,I(t, x) = γ +
(1− γ)(1 + ∂xf

I)2

∂2
xxf

I + ∂xf I + (∂xf I)2 + 1−γ
θI
e(η−1)x

, I ∈ {O,P}, (t, x) ∈ [0, T )× (x, x), (30)

where x = log z and x = log z. Suppose that γeff,I(t, x) > 0, for any (t, x) ∈ [0, T ) × (x, x) and
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I ∈ {O,P}. Then the agent’s optimal beliefs and strategies are given by

uI,∗ =
(1− γ)(1 + ∂xf

I)

∂2
xxf

I + ∂xf I + (∂xf I)2 + 1−γ
θI
e(η−1)x

σ′πI,∗, (31)

πI,∗ =
1

γ
Σ−1

(
µ− r − (1 + ∂xf

I)σuI,∗
)

=
1

γeff,I
Σ−1(µ− r), (32)

cI,∗

W
= δψe−

1
γ
fI , I ∈ {O,P}. (33)

The optimal portfolio weight in (32) generalizes our finding for the two-stage example and

highlights the impact of the Cressie-Read penalty. Without a preference for robustness, CRRA

utility as well as Epstein and Zin (1989) preferences in combination with i.i.d. returns lead to

the well-known myopic portfolio, namely π∗ = 1
γ
Σ−1(µ − r), see, e.g., Samuelson (1969) and

Merton (1969). In the case of entropy, the main effect in the pessimistic state is to increase

effective risk aversion, replacing γ by γ + θP , see, e.g., Maenhout (2004).

In the case of Cressie-Read divergence, we obtain two novel effects. First, effective risk

aversion γeff,I becomes belief- and state-dependent, driven by the endogenous sentiment

state variable, in line with the discussion of the utility index process in Section 1.2 earlier.

Note that effective risk aversion simplifies to γ when the agent has no preference for

robustness (θI = 0) and becomes γ + θI when η = 1, i.e. in the entropy case, since f I is

state-independent in this case. Second, the investor anticipates future changes in beliefs and

the corresponding changes in perceived investment opportunities. This induces a Merton-

type intertemporal hedging demand, which is captured by the term − 1
γ
Σ−1∂xf

IσuI,∗, added

to the mean-variance optimal portfolio 1
γ
Σ−1(µ− r − σuI,∗).

The condition in Proposition 3 that γeff,I > 0, i.e., the agent is still effectively risk-averse

after taking into account the state-dependent component, gives rise to constraints on the

choice of θO. However, θP can be an arbitrary positive constant.17

We now study the optimal portfolio weight in more detail numerically. To this end, we

focus on a single risky asset (d = 1) and numerically solve the HJB equations in Proposition 3

with the parameters listed in Panel A of Table 2. We first shut down regime switching (i.e.,

λO = λP = 0) and examine portfolio choice under optimism and pessimism separately.

Afterwards we discuss the additional effects due to regime switching.

We start by considering a short horizon T of one year in order to focus on the effect of the

Cressie-Read penalty on the myopic portfolio component. In the limit when the investor’s

horizon shrinks to zero, the intertemporal hedging component vanishes and only the myopic

component remains. When the sentiment state variable x is zero, we expect a portfolio

17When γ > 1, the second-order condition for the optimization in u implies that γeff,P is always positive (see
condition (ii) in Proposition 6 in Appendix A). However, when I = O, the second-order condition implies that
the second term on the right-hand side of (30) is negative (see condition (ii’) in Proposition 6). This term cannot
be too negative to dominate γ, lest it results in a negative effective risk aversion γeff,O. We verify the conditions
of Proposition 6 numerically in our examples later on.
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Table 2. Parameter Values

This table reports parameter values used for simulations. In addition to the variables defined below we use

ε = 1.

Parameter Variable Value

Panel A: Partial Equilibrium
r Interest Rate 0.03
δ Discount Rate 0.03
µ Expected Stock Return 0.1
σ Stock Volatility 0.2
γ Risk Aversion 6

Panel B: General Equilibrium
δ Discount Rate 0.04
µc Consumption Growth Rate 0.0191
σc Consumption Volatility 0.038
µD Dividend Growth Rate 0.0245
σD Dividend Volatility 0.17
ρ Consumption-Dividend Correlation 0.2
γ Risk Aversion 7
ψ EIS 1.3
η Cressie-Read Parameter 0.6
θP Preference parameter for pessimism 6
θO Preference parameter for optimism -1
`O Intensity parameter from P to O 0.005
`P Intensity parameter from O to P 0.025
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allocation close to the entropy case. Figure 2 shows that the Cressie-Read penalty produces

the same optimal distortion u∗ and the same portfolio weight π∗, for any value of η, both in

the optimistic and pessimistic states when x is zero. This coincides with the results obtained

in the second stage of the two-stage example with Z = 1 in equations (24) and (26).

In the top two panels of Figure 2, the investor is pessimistic with robustness parameter

θP = 1. As discussed at the beginning of Section 2.3, the sentiment variable x increases

when market conditions deteriorate. At the same time, when η < 1, effective risk aversion

is countercyclical and increases with x, the agent becomes more pessimistic as u increases

(top left panel) and portfolio choice becomes more conservative (top right panel). Moreover,

risk aversion increases faster for smaller η, which explains the steeper slope for η = 0.5 than

for η = 0.7. On the other hand, when η > 1, effective risk aversion decreases with x, as is

apparent from the positively sloped portfolio rule for η = 1.3 and 1.5 in the top right panel.

Turning to optimism with parameter θO = −1 in the bottom two panels of Figure 2,

the sentiment variable x now increases as market conditions improve. For η < 1, effective

risk aversion and belief distortion (bottom left panel) are countercyclical, and the optimal

portfolio weight is procyclical (bottom right panel). The effects for η > 1 are opposite.
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Figure 2. State dependent optimal distortions and portfolios

Notes: This figure plots optimal distortions and portfolios for pessimistic utility (top panels) and optimistic utility
(bottom panels) at time zero. The preference parameters for robustness are θP = 1 (top panels) and θO = −1
(bottom panels). Other parameters used are summarized in Panel A of Table 2 and the time horizon is T = 1 year.

We now turn to a long horizon with T up to 100 years in order to study intertemporal

hedging and resulting horizon effects. The seminal work of Merton (1973) explains how

non-myopic investors tilt their portfolio in order to hedge against future changes in the
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investment opportunity set. For example, if returns on a risky asset are contemporaneously

negatively correlated with expected returns on that asset, it becomes less risky to hold over

longer horizons, inducing investors with longer horizons to increase their holdings. Despite

returns being i.i.d. in our setting, intertemporal hedging appears because of the investor’s

distorted beliefs; even though expected returns are constant under the reference measure

B, they are not constant under U when η 6= 1. In particular, because of time-varying

sentiment, the belief distortion u reacts to return innovations. When the belief distortion

is countercyclical (η < 1), positive return shocks reduce pessimism or strengthen optimism,

which increase the perceived expected return on the risky asset. In other words, for η < 1,

returns and expected returns under U are positively correlated, which leads to negative

intertemporal hedging demands that grow with the horizon, see the right two panels of Figure

3. Recall that for η > 1, positive return shocks strengthen pessimism or reduce optimism

and therefore decrease the perceived expected return, we now have a negative correlation

between historic returns and expected return. This explains the positive intertemporal

hedging demand for η > 1, which naturally grows with the horizon, see the right two panels

of Figure 3. We also observe from Figure 3 that the relationship between η and the sentiment

state is asymmetric. When the agent is pessimistic, effects are more pronounced for η < 1

than for η > 1 for the same deviation from η = 1, for example, η = 0.5 and η = 1.5. Meanwhile,

with optimism the effects are more pronounced for η > 1.

Figure 3. Time dependence of optimal distortions and portfolios
Notes: This figure plots optimal distortions and portfolios for pessimistic utility (top panels) and optimistic utility
(bottom panels) at x = 0. The preference parameters for robustness are θP = 1 (top panels) and θO = −1 (bottom
panels). Other parameters used are summarized in Panel A of Table 2 and the time horizon is T = 100 years.
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We now discuss additional effects due to regime switching. To this end, we fix the regime-

switching intensities in equation (19) to

λI = `I/Z1−η
t = `Ie(η−1)xt , I ∈ {I, O}, (34)

for positive constants `I . As `I increases, regime switching is more likely. As a result, the left

panel of Figure 4 (a) shows that the agent’s value functions fP and fO in (29) become more

similar to each other as `I increases, because the continuation utility after regime switching

is the optimal value of the other state. The middle and right panels in (a) demonstrate

increasing state-dependence in the regime-switching model. The intuition for this is that

after positive return shocks, the pessimistic agent not only becomes less pessimistic, but also

more likely to switch to optimism. Similarly, after bad return shocks, the optimistic agent

becomes less optimistic and more likely to become pessimistic. Therefore, regime switching

strengthens the effect of dynamic optimism and pessimism, increasing the curvature of the

portfolio allocation rules in the right panel of (a). The right panel of Figure 4 (b) shows

that intertemporal hedging decreases with the regime-switching intensities. This is because

large intensities effectively shrink the investor’s horizon, which dampens the intertemporal

hedging demand.
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(a) State dependence at time zero
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Figure 4. Value functions, optimal distortions and portfolios in regime switching models

Notes: This figure plots value functions (fP and fO in (29)), optimal distortions, and portfolios in the regime
switching model at time zero (left panels), and the time dependence of optimal distortions and portfolios at x = 0
(right panels). The preference parameters for robustness are θP = 1 and θO = −1. The transition intensities are
λP = λO = λ/ exp((1 − η)x). Other parameters used are summarized in Panel A of Table 2, the Cressie-Read
parameter is η = 0.5, and the time horizon is T = 100 years.
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3 General Equilibrium

We now extend our analysis to equilibrium asset pricing. To this end, we consider

an economy with a single Lucas tree. Its dividend, which must be consumed by the

representative agent, has the following dynamics

dct
ct

= µcdt+ σcdBB
t , (35)

where µc and σc are constants. The equilibrium price PL of this Lucas tree follows

dPL
t + ctdt

Pt
= µLt dt+ σLt dB

B
t . (36)

The expected return µL, the volatility σL, and the interest rate r will be determined

endogenously. We take x as the state variable and conjecture that µL, σL, and r are all

functions of time and the state.18

Given PL and r, the representative agent, with preferences based on Cressie-Read

divergence, invests and consumes with the optimal investment strategy π∗ and the optimal

consumption strategy c∗. In an attempt to match empirical asset pricing evidence

quantitatively, we extend our earlier analysis and endow the representative agent with

Epstein and Zin (1989) preferences towards intertemporal consumption in addition to

Cressie-Read divergence.19 We denote the agent’s elasticity of intertemporal substitution by

0 < ψ 6= 1 and define ν = 1−γ
1− 1

ψ

.

Definition 1. (r, µL, σL, π∗, c∗) is an equilibrium if

1. The financial market clears, i.e., π∗ ≡ 1;

2. the aggregate resource constraint holds, i.e., c∗ ≡ c.

We now present equilibrium quantities in the following Proposition.

Proposition 4. Let fP and fO be solutions to a system of equations specified in Proposition 7 in

Appendix A. Then the equilibrium expected return, volatility, and risk-free interest rate under

18While the optimal portfolio and consumption decisions obtained in Section 2 under the assumption of
constant µ, σ and r, the solution to the dynamic consumption and portfolio problem in Proposition 6 takes
the state variable x into account. Therefore, even though µL, σL, and r are x-dependent, no additional state
variable needs to be introduced and the optimal u∗ and π∗ still take the form of (31) and (32) with µ and σ
therein replaced by µL and σL.

19The details of the preferences and the associated optimal consumption-investment problem are
summarized in Appendix A.
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regime I ∈ {O,P} are given by

µL,I − rI = γeff,I(σL,I)2, (37)

σL,I = σc − ψ
ν
∂xf

IuI,∗, (38)

rI = δ + 1
ψ
µc − 1

2
γent,I

(
1 + 1

ψ

)
(σc)2 + DAI , (39)

where uI,∗ is given by

uI,∗ =
(1− γ)(1 + ∂xf

I)σc

∂2
xxf

I + ψ∂xf I + ψ(∂xf I)2 + 1−γ
θI
e(η−1)x

, (40)

the effective risk aversion γeff,I is given in (30) and γent,I = γ + θIe(1−η)x is the effective risk

aversion in the entropy case with the robustness parameter frozen at θIe(1−η)x. DAI is a state-

dependent dynamic adjustment, whose expression is given in (A.14).

The equilibrium equity premium in (37) is given by a Consumption CAPM relationship,

where the key innovation is the time-varying price of risk. The Cressie-Read penalty allows

us to produce rich dynamics, despite the stylized underlying dynamics of this lognormal i.i.d.

economy. Recall that we expect a countercyclical price of risk for η < 1, since in this case

the investor’s effective risk aversion γeff,I is countercyclical, due to increases in pessimism or

decreases in optimism following adverse shocks. This mechanism is driven entirely by time-

varying sentiment and the stochastic beliefs it generates endogenously. Juxtaposition with

the entropy case reveals that even in the regime-switching model, equilibrium quantities

remain constant in each sentiment state, because f I is state-independent.20 When the agent’s

sentiment state changes due to market-independent shocks in the regime-switching model,

equilibrium quantities switch as well. Moreover, when η < 1, switching between different

sentiment states is more likely when the sentiment variable x is low, i.e., when the agent’s

subjective belief is close to the reference model B.21

The second key contribution to equilibrium asset pricing is that we obtain excess

volatility, driven by time-varying sentiment. With entropy, σL,I = σc and the well-known

excess volatility puzzle emerges, as is common in standard asset pricing models with

lognormal dynamics. To understand the intuition, we turn off regime switching (i.e. λI ≡ 0).

In equation (38), observe that from equation (29)

−ψ
ν
∂xf

IuI,∗ = ψ−1

W 1−γefI

(
∂xV

I(−u∗,I)
)
,

where V I is the optimal value function. Note that ∂xV I(−u∗,I) corresponds to the sensitivity

20In the entropy cost case, f I satisfies a pair of coupled ODEs obtained by setting η = 1 and all spatial
derivatives to zero in (A.10). From this coupled ODE, we observe that f I is time-dependent, but state-
independent.

21This is because ΛO and ΛP are both decreasing in x when η < 1. Therefore the regime-switching intensities
λO and λP are decreasing in x.
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of the optimal value with respect to fundamental shocks, which is positive for a procyclical

value function. Therefore, excess volatility emerges when the EIS ψ is in excess of 1.22 It is

also intuitive that the excess volatility generated in our model is proportional to uI,∗, since

this is the instantaneous volatility of the (log) state variable Z capturing belief distortions.

In particular, when the agent is pessimistic, u∗,P increases in bad times, therefore we expect

equilibrium stock price volatility to increase in bad times when the agent is more likely to be

pessimistic. We confirm this in the calibrated model in the next section.

Finally, for the equilibrium risk-free rate, we present a decomposition to facilitate

comparison with existing results in the literature so as to flesh out our contributions

most clearly. We find that Cressie-Read penalty adds a rich dynamic adjustment to the

equilibrium risk-free rate that obtains in an economy with entropy penalty. The first

three terms in equation (39) represent the effect of the usual determinants of savings

behavior on equilibrium interest rates, namely the rate of time preference δ, intertemporal

substitution based on the investor’s EIS ψ and expected consumption growth µc, and

precautionary savings. The Cressie-Read setting adds a dynamic adjustment to these

standard determinants. These additional terms are all related to precautionary savings

reflecting the stochastic effective risk aversion and the higher volatility in the economy due

to time-varying sentiment. For the entropy case with robustness preference parameter set to

θIe(1−η)x, DAI vanishes, reducing (39) exactly to the case in Maenhout (2004). Signing the DAI

requires solving the HJB (A.10), which we do in the calibration later.

Before turning to the calibration, we show how to use these equilibrium results to price a

stock. To this end, consider dividend dynamics given by

dDt

Dt

= µDdt+ σD(ρdBB
t +

√
1− ρ2dB⊥t ), (41)

where µD and σD are constants representing the dividend growth rate and volatility

respectively, and B⊥ is a Brownian motion independent of BB. The constant ρ is the

instantaneous correlation between consumption and dividend growth.

We consider the stock as an asset in zero net supply with a shadow price determined in

equilibrium. Suppose that S follows the dynamics

dSt +Dtdt

St
= µS,It dt+ σS,It dBB

t + σS,I,⊥t dB⊥t , (42)

where I ∈ {O,P}. Define ` = S/D as the price-dividend ratio. The following result presents

the equilibrium stock return and volatility in different sentiment states.

Proposition 5. Let `I , I ∈ {O,P}, be the solution to the equation (B.23) in Online Appendix B

22The necessity of Epstein and Zin (1989) preferences is also highlighted in Jin and Sui (2019) who study
a model of asset pricing with extrapolative expectations. These preference parameter restrictions are also
common in the long-run-risk literature.
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and uI,∗ given by (40). Then

µS,It =
∂t`

I

`I
+

1

2
|uI,∗|2∂

2
xx`

I

`I
− 1

2
|uI,∗|2∂x`

I

`I
+ µD − uI,∗σDρ∂x`

I

`I
+

1

`I
,

σS,It =− uI,∗∂x`
I

`I
+ σDρ, σS,I,⊥t = σD

√
1− ρ2.

(43)

Moreover, the CAPM relation µS,It = rIt + λItσ
S,I is also satisfied.

The results are intuitive and extend our earlier findings to the case of an asset that

pays dividends that are less than perfectly correlated with the consumption stream of the

representative agent. The risk premium on the stock is given by the standard Consumption

CAPM, but with a time-varying price of risk generated by our model. We also obtain excess

volatility. Without robustness consideration or with entropy-based robustness, the price-

dividend ratio is trivially constant in a lognormal economy, resulting in the equilibrium

stock volatility being equal to the dividend volatility. The Cressie-Read divergence measure

leads to time-varying beliefs, inducing a dynamic price-dividend ratio. Equation (43) shows

that excess volatility emerges when the price-dividend ratio is procyclical. This is intuitive

and reflects the contribution of volatile valuation ratios to stock return volatility. High

price-dividend ratios driven by positive sentiment during good times, as well as low price-

dividend ratios driven by negative sentiment in bad times both act to raise equilibrium stock

volatility above dividend volatility. We examine the equilibrium stock volatility in our model

calibration later.

4 Estimating Sentiment

We now estimate a measure of time-varying sentiment from the data. We first measure the

difference between agents’ subjective and objective beliefs. To measure subjective beliefs, we

make use of an extensive survey on aggregate GDP growth, unemployment, and inflation. In

addition to subjective beliefs, we also need a measure of objective beliefs since the difference

between the subjective and objective beliefs will help us back out the optimal distortion.

Objective beliefs are calculated from a vector autoregression (VAR) from which we infer

forecasts of macroeconomic variables.

Subjective Beliefs: We hand collect survey data from Consensus Economics Inc. Each month

survey participants are asked for their forecasts of a range of macroeconomic and financial

variables for the major economies. There are on average around 30 respondents each month.

Our analysis focuses on US real GDP growth, unemployment, and inflation.23 Each month

respondents submit a forecast for the current end of calendar year, as well as next end of

23We also use an alternative survey of macro forecasts, namely Blue Chip Economic Indicators, and find
qualitatively similar results.
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calendar year. Since these forecasts are formed over a moving forecast horizon, we use a

linear interpolation method to get constant maturity forecasts.

Objective Beliefs: To get a proxy for objective beliefs, we estimate a VAR with two lags on real

GDP, inflation, and unemployment and use forecasts from this VAR(2).

We define a wedge on beliefs as the difference between the subjective and objective beliefs

about future macroeconomic variables, measuring the amount of pessimism or optimism in

the economy. Figure 1 plots the wedge for all three variables using data between 1995 and

2018. The figure reveals that before economic recessions, beliefs are optimistic, whereas

there is a dramatic drop in GDP wedges turning to pessimism after recessions. While the

rebound after the 2001 crisis has been fast, the repercussions of the 2008 Great Financial

Crisis are long lasting leading to significant pessimism on average. In our sample period,

the average GDP wedge is around -1.06% with an associated standard deviation of 1.4%.

Skewness is also negative at -0.904.

In the following, we use our GDP estimates to inform us about the dynamics of the optimal

belief distortion u?. Recall that in our model the wedge on beliefs is defined as−u∗σL,I . Belief

distortions u? are therefore estimated by dividing the wedge by the sample standard deviation

of the Lucas tree.

5 Calibration

We now turn to the calibration in order to explore the ability of our equilibrium model to

quantitatively match salient features of asset prices together with the wedge dynamics. To

this end, we assume that the representive agent’s sentiment toward consumption is the

same as the sentiment estimated via GDP growth in the previous section. We numerically

solve the equations in Propositions 4 and 5. Importantly, we discipline the free parameters

governing the preference for robustness, Cressie-Read divergence, and intensities of regime

switching by the first three moments of the wedges, their sluggishness (measured by the

AR(1) coefficient of wedges), and the proportion of time in different sentiment states reported

in Panel A of Table 3. We use the values of consumption growth rate, consumption volatility,

and dividend growth rate reported in Campbell and Cochrane (1999). The remaining model

parameters used for calibration are summarized in Panel B of Table 2. In particular, the

Cressie-Read parameter is crucial and our value η = 0.6 lies between entropy (η = 1) and

Hellinger (η = 0.5). The preference parameters for pessimism and optimism are θP = 6 and

θO = −1, respectively. Moreover, the regime-switching intensities take the form given in

equation (34) with the intensity jumping from pessimism to optimism smaller than the other

intensity, in order to match the wedge properties where 85% of the time the wedge is negative

and the representative agent is pessimistic.
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Table 3. Summary Statistics of Equilibrium Quantities

This table reports moments about equilibrium quantities of the calibrated model. The model is
disciplined by the first three moments of wedges on GDP, its AR(1) coefficient, and the proportion
of each sentiment state. The AR(1) coefficient is the fitted β in wedget = α+ β ×wedget−1 + εt, where
wedget = −u∗tσLt . The empirical values of equilibrium quantities are obtained from Campbell and
Cochrane (1999) and Beeler and Campbell (2012). The theoretical values are moments of equilibrium
quantities between year 20 to 50 obtained by Monte Carlo simulation with 104 paths. Parameters used
are summarized in Panel B of Table 2. The time horizon is T = 100 years.

Panel A: Statistic Calibrated value Empirical value

Mean wedge (EB[−u∗σL]) -0.97% -1.06%
stdev wedge (σ(−u∗σL)) 0.84% 1.4%
Skewness wedge (skewness(−u∗σL)) -1.48 -0.90
AR(1) coefficient on wedge 0.92 0.83
Percentage of pessimistic periods 84% 85%

Panel B: Moments of equilibrium quantities Theoretical value Empirical value

Equity premium (EB[µS − r]) 4.29 % 3.90%
Stock volatility (σS) 17.7 % 18.0%
Sharpe ratio (EB[µS − r]/σS) 0.24 0.22
Interest rate (EB[r]) 2.85 % 2.92%
Interest rate volatility (σ(r)) 1.42 % 2.89%
Mean log price-dividend ratio (EB(log(P/D))) 3.13 3.05
stdev log price-dividend ratio (σ(log(P/D))) 0.10 0.27

Panel C: Conditional moments Pessimism Optimism

Equity premium (EB[µS − r]) 4.83 % 1.43%
Stock volatility (σS) 17.9 % 17.0%
Sharpe ratio (EB[µS − r]/σS) 0.27 0.08
Interest rate (EB[r]) 2.45 % 4.88%
Interest rate volatility (σ(r)) 1.21 % 0.11%
Mean log price-dividend ratio (EB(log(P/D))) 3.12 3.19
stdev log price-dividend ratio (σ(log(P/D))) 0.11 0.05
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Figure 5. General equilibrium quantities

Notes: This figure plots the optimal distortion, interest rate, price-dividend ratio, stock volatility, difference in
stock risk premia between measures, and the Sharpe ratio in equilibrium for both optimistic state (red dash
lines) and pessimistic state (black solid lines). The stock volatility is σS =

√
(σS,I)2 + (σS,I,⊥)2. Parameters

used are summarized in Panel B of Table 2 and time horizon is T = 100 years. All figures present quantities at 50
years. They all center at the mean of the sentiment variable and span the 5% to 95% quantiles of the distribution
for the sentiment variable.

We follow Jin and Sui (2019) and use the empirical asset pricing evidence reported in

Campbell and Cochrane (1999) and in Beeler and Campbell (2012) as objectives to match.

Asset pricing results produced by the calibrated model are reported in Panel B of Table 3

and conditional moments of equilibrium quantities are reported in Panel C. Notice that

most of our equilibrium results are driven by pessimism in our calibrated model because

the data shows that wedges are mostly negative. In particular, Table 3 panel B shows that the

model performs well in generating a sizeable risk premium and realistic Sharpe ratio. The

quantitative success in producing excess volatility is more limited.

We can also study the effects of different states on equilibrium quantities. Figure 5 reports

the state dependence at time t = 50 years. The black solid lines represent equilibrium

quantities in the pessimistic state of the regime-switching model; while the red dashed lines
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represent equilibrium quantities in the optimistic state. Starting from the pessimistic state,

successive positive fundamental shocks before year 50 move equilibrium quantities along the

black solid lines to the left (i.e., smaller values of x). As x decreases, it is increasingly likely to

switch to the optimistic state and jump to the red dashed line. Afterward continuing positive

fundamental shocks drive equilibrium quantities along the red dashed lines to the right (i.e.,

larger value of x). Figure 5 shows that the belief distortion, equilibrium volatility, and Sharpe

ratio are all countercyclical, the equilibrium interest rate is procyclical, the price-dividend

ratio is procyclical in the pessimistic state and displays some reversal in the optimistic state,

because the agent anticipates returning to the pessimistic state in the future. All of these

results reflect the procyclical sentiment generated by the model.

Importantly, the wedge between the objective and the subjective risk premium is

reasonable and around 130 basis points at the mean of the state space, while it spans

approximately 360 basis points within the 5% to 95% quantiles of the state space. As

Hansen and Sargent (2020) and Chamberlain (2020) both point out, a central idea in robust

Bayesian analysis based on classical work of Good (1952) is to judge the plausibility of a min-

max model by examining how reasonable the subjective belief U is that is supporting the

equilibrium. We conclude that our deviations are therefore not too far off.

Turning to the distributions of the equilibrium quantities, Figure 6 shows heavy-tailed

distributions in adverse market conditions for equilibrium interest rate, Sharpe ratio, and

the equity risk premium. This echoes the elevated sentiment volatility after bad shocks in the

pessimistic state discussed in Section 1.2. Even though sentiment volatility can also increase

after good shocks in the optimistic state, the predominance of pessimistic sentiment in the

data mutes the impact of optimistic periods.

Finally, we can use the same set of parameters to gauge the effect of Cressie-Read relative

to entropy. For example, in the case of relative entropy, the model produces a higher risk-free

rate of 3.9%, a very low equity risk premium of 1.5% percent, a constant return volatility equal

to the volatility of dividends, and a constant Sharpe Ratio of 0.09. We therefore conclude by

noting that our Cressie-Read extension improves substantially on the quantitative front, in

addition to generating meaningful time-variation at the business cycle frequency.

6 Conclusions

Our paper makes the following contributions. First, we propose a new model of dynamic

sentiment motivated and supported by empirical evidence that survey expectations deviate

from rational expectations and exhibit prolonged episodes of pessimism and optimism.

Forecast errors relative to rational expectations arise endogenously in our model as

agents fear misspecification of the benchmark model and seek robustness by considering

alternative models. We generalize existing approaches to robustness in two ways. First, we

replace the entropy criterion that is ubiquitous in the literature on robust control by the
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Figure 6. Distribution of equilibrium quantities

Notes: This figure plots the distributions of interest rate, stock volatility, risk premium B, and difference in stock
risk premia between measures along equilibrium path generated via Monte Carlo between year 20 and year 50.
Parameters used are summarized in Panel B of Table 2 and time horizon is T = 100 years.

family of Cressie-Read divergences. Our Cressie-Read divergence measure is recursive and

homothetic, leading to time-consistent preferences and tractable decision problems. This

extension opens the door to endogenous and state-dependent dynamics of belief distortions,

governed by the Cressie-Read parameter η. In particular, the dynamics of sentiment can be

procyclical or countercyclical depending on the sign of 1 − η. Sentiment is driven by past

fundamental shocks, as well as by past belief distortions, thereby generating the sluggishness

of sentiment observed empirically. As a second extension of the literature on robust control

our model allows for optimism in addition to pessimism, and features a regime-switching

mechanism where the likelihood of switching depends also on the sentiment state variable.

As a second contribution, we apply our model to understand portfolio choice and general

equilibrium asset pricing. We highlight the ability of the model to generate rich dynamics

and to explain empirically relevant phenomena by deliberately assuming i.i.d. Gaussian

fundamentals, in which case entropy produces constant portfolios, risk premia, interest

rates, and volatility. In our model, endogenous sentiment gives rise to stochastic effective

risk aversion. When the Cressie-Read parameter η is smaller than one, effective risk aversion

is countercyclical, while the opposite happens whenever η > 1. In our portfolio problem, this

33



induces intertemporal hedging and therefore both horizon- and state-dependent portfolios,

despite returns being i.i.d. We calibrate our general equilibrium asset pricing model using

estimates of belief distortions obtained from survey data of expectations by professional

forecasters about future economic activity. We find that our model is able to match empirical

observations on equity premium, Sharpe ratio, and interest rates.

The model we proposed can be applied in a variety of dynamic decision problems that are

of economic interest. For example, Ling, Miao, and Wang (2021) use our theoretical results to

study robust financial contracting and corporate investment.

While we have deliberately studied the simplest possible Lucas economy to flesh out

most clearly the implications of the Cressie-Read divergence, a natural extension of our

work would feature tail risk. It is well-known that macroeconomic fundamentals such as

consumption feature fat tails, which might be due to a small probability of a disaster, see, e.g.,

Barro (2006). Rare disaster asset pricing models study the implications of these large negative

shocks for asset prices, see, e.g.,Tsai and Wachter (2015) for a review. A setting with tail risk

and agents featuring robustness concerns is therefore a natural extension of our framework,

which we leave for future research.

Giglio, Maggiori, Stroebel, and Utkus (2021) document rich heterogeneity in investor

beliefs. Studying investor heterogeneity in beliefs and portfolios, including its effect on

equilibrium asset prices is another very promising avenue for future research based on our

model.
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Appendix A Additional results

Optimal consumption and investment for an Epstein-Zin utility agent

Consider an agent whose preference over consumption streams is described by a

continuous-time stochastic differential utility of the Kreps-Porteus and Epstein-Zin type.

Given a discount rate δ, relative risk aversion 0 < γ 6= 1, and EIS 0 < ψ 6= 1, the Epstein-Zin

aggregator F (see, e.g., Duffie and Epstein (1992)) is F (c, v) ≡ δ c
1− 1

ψ

1− 1
ψ

(
(1 − γ)v

)1− 1
ν − δνv, with

ν = 1−γ
1− 1

ψ

. Incorporating the Cressie-Read divergence, we introduce the pessimistic Epstein-

Zin preference for a consumption stream c as

UP,ct = inf
u
EU
t

[ ∫ T

t

F (cs,UP,cs ) + 1
2θP

ΨsZ
η−1
s∧τ |us|2 ds+ εU(cT )

]
, (A.1)

where τ = inf{t ≥ 0 : Zt ≤ z or Zt > z}. Following Lemma 2, UP,c satisfies the BSDE

dUP,ct =
[
δUP,ct − F (ct,UP,ct ) +

θP

2Ψt

Z1−η
t∧τ |Γt|2

]
dt+ Γ′tdB

B
t , U cT = εU(cT ),

The worst-case belief distortion is induced by u∗t = θP Γt
Ψt

Z1−η
t∧τ . The optimistic Epstein-Zin

preference UO,c and its associated best-case belief distortion can be characterized similarily.

In the regime switching model, consider the optimal consumption-investment problem

(21) for an agent with Epstein-Zin preferences. V P in (21) satisfies

V P
t = sup

π,c
inf
u
EU
t

[ ∫ T∧ν

t

F (cs, V
P
s ) +

1− γ
2θP

V P
s Z

η−1
s∧τ |us|2 ds+ εU(cT ) 1{ν>T} + V O

ν 1{ν≤T}

]
. (A.2)

V O
t = sup

π,c
sup
u

EU
t

[ ∫ T∧ν

t

F (cs, V
O
s ) +

1− γ
2θO

V O
s Z

η−1
s∧τ |us|2 ds+ εU(cT ) 1{ν>T} + V P

ν 1{ν≤T}

]
. (A.3)

We choose xt = logZt as the agent’s state variable. The choice of Ψ in (22) ensures the

decomposition V P
t =

W 1−γ
t

1−γ e
fP (t,xt) and V O

t =
W 1−γ
t

1−γ e
fO(t,xt). The following proposition presents

the equations satisfied by fO, fP and the optimal consumption and investment strategies.

Proposition 6. When γ ∈ (0, 1), the function fP defined in (29) satisfies

0 = sup
π,c̃

inf
u

{
∂tf

P + 1
2
|u|2
(
∂2
xxf

P + ∂xf
P + (∂xf

P )2
)
− (1− γ)∂xf

Pπ′σu+ δνc̃1− 1
ψ e−

1
ν
fP (A.4)

+ (1− γ)
[
r + π′(µ− r − σu)− c̃− 1

2
γπ′Σπ

]
− δν + 1−γ

2θP
e(η−1)x|u|2 + ΛO(e(1−η)x)

(
ef

O−fP − 1
)}
,

for (t, x) ∈ [0, T )× (x, x), with boundary conditions

fP (t, x) = f ent,P
x (t), fP (t, x) = f ent,P

x (t), and f(T, x) = log ε. (A.5)
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When γ > 1, the infimum and supremum in (A.4) are changed to infπ,c̃ supu. Denote

γeff,P (t, x) = γ +
(1− γ)(1 + ∂xf

P )2

∂2
xxf

P + ∂xfP + (∂xfP )2 + 1−γ
θP
e(η−1)x

. (A.6)

Suppose that, for any (t, x) ∈ [0, T )× (x, x),

(i) γeff,P (t, x)Σ is positive definite,

(ii) (1− γ)
(
∂2
xxf

P + ∂xf
P + (∂xf

P )2 + 1−γ
θP
e(η−1)x

)
> 0.

Then the agent’s optimal belief uP,∗ and strategies πP,∗ and cP,∗ are given by

πP,∗ =
1

γeff,P
Σ−1(µ− r), (A.7)

uP,∗ =
(1− γ)(1 + ∂xf

P )

∂2
xxf

P + ∂xfP + (∂xfP )2 + 1−γ
θP
e(η−1)x

σ′πP,∗, (A.8)

cP,∗

W
= δψe−

ψ
ν
fP . (A.9)

Function f ent,P
x in (A.5) is the value for the problem with an entropy cost and θ(x) = θP e(1−η)x.

It then satisfies the ODE given in Online Appendix (B.12).

Equation (A.4) is coupled with fO, which satisfies an equation similar to (A.4) with fO and

fP swapped, θP replaced by θO, and supπ,c̃ supu when γ ∈ (0, 1) or infπ,c̃ infu when γ > 1.

The effective risk aversion γeff,O is defined as (A.6) with fP and θP replaced by fO and θO,

respectively. Conditions (i) and (ii) above are replaced by

(i’) γeff,O(t, x)Σ is positive definite,

(ii’) (1− γ)
(
∂2
xxf

O + ∂xf
O + (∂xf

O)2 + 1−γ
θO
e(η−1)x

)
< 0.

Agent’s optimal optimistic belief uO,∗ and strategies πO,∗ and cO,∗ are similar to (A.7), (A.8), (A.9)

with fP and θP replaced by fO and θO.

Full statement of Proposition 4

Proposition 7. Let f I and f Ī be solutions of the following coupled equations

0 = ∂tf
I + 1

2
|uI,∗|2

(
∂xxf

I + ∂xf
I + ψ(∂xf

I)2
)
− (1− γ)∂xf

IuI,∗σc − δ ν
ψ

(A.10)

+ 1−γ
ψ

(
µc − uI,∗σc − 1

2
γ(σc)2

)
+ δψ ν

ψ
e−

ψ
ν
f + 1−γ

2ψθ
e(η−1)x|uI,∗|2 + 1

ψ
ΛĪ(e(1−η)x)

(
ef

Ī−fI − 1
)
,

for I ∈ {O,P}, Ī = {O,P} \ I, (t, x) ∈ [0, T )× (x, x), with boundary conditions

f I(t, x) = F ent,I
x (t), f I(t, x) = F ent,I

x (t), f I(T, x) = log ε. (A.11)
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Moreover u∗ in (A.10) is given by

uI,∗ =
(1− γ)(1 + ∂xf

I)σc

∂2
xxf

I + ψ∂xf I + ψ(∂xf I)2 + 1−γ
θ
e(η−1)x

. (A.12)

In (A.11), F ent,I
x , with x = x or x, is the value in an equilibrium where the representative agent

has an entropy-based preference with the preference parameter θIe(1−η)x and F ent,I
x satisfies

coupled ODEs

0 =∂tF
ent,I
x − δ ν

ψ
+ 1−γ

ψ

(
µc − uent,Iσc − 1

2
γ(σc)2

)
+ δψ ν

ψ
e−

ψ
ν
F ent,I
x

+ 1−γ
2ψθ

e(η−1)x|uent,I |2 + 1
ψ

ΛĪ(e(1−η)x)
(
eF

ent,Ī−F ent,I − 1
)
,

(A.13)

with the boundary condition F ent,I
x (T ) = log ε and uent,I = θIe(1−η)xσc.

Then the equilibrium expected return, volatility, and risk-free interest rate are given in (37),

(38), (39). In (39), DA is given by

DAI =− γdyn,I(σc)2 − ψγ
ν
∂xf

IuI,∗σc + (1− 1
ψ

)udyn,Iσc (A.14)

+
[
− ψ

ν
∂xf

I + ψ2

2ν2

(
1− ν − 2γimp,I

)
(∂xf

I)2
]
|uI,∗|2 − 1− 1

ψ

2θI
e(η−1)x

[
2uent,Iudyn,I + (udyn,I)2

]
,

where γeff,I = γent,I + γdyn,I and uI,∗ = uent,I + udyn,I = θIe(1−η)xσc + udyn,I .
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Appendix B Proofs

Continuous-time Cressie-Read divergence

Lemma 1. When Φt = Z1−η
t and EB

[ ∫ T
0
e−δs|Ψs|pds

]
< ∞ for some p > 2, then RU in (10)

becomes (11), and it satisfies the following recursive relation

RU
t = EU

t

[ ∫ t̃

t

e−δ(s−t)
1

2
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)RU

t̃

]
, for any t̃ ≥ t.

Proof. Using Itô’s formula on Dt,s defined in equation (10) yields that

dDt,s = dφ(Zt,s) =
Zt,s−Zηt,s

1−η (−u′s)dBB
s + 1

2
Zη
t,s|us|2ds. (B.1)

It follows from Hölder’s inequality that

EB
t

[ ∫ T

t

e−δ(s−t)(Zt,s−Zη
t,s)

2Ψ2
s|us|2ds

]
≤ C2EB

t

[ ∫ T

t

e−δ(s−t)(Zt,s−Zη
t,s)

2qds
] 1
qEB

t

[ ∫ T

t

e−δ(s−t)Ψ2p
s ds

] 1
p
,

where C = max |u| and 1/p + 1/q = 1. Because EB
t

[ ∫ T
t
e−δ(s−t)Ψ2p

s ds
]
< ∞ with some p > 1

by assumption and EB
t

[ ∫ T
t
e−δ(s−t)(Zt,s − Zη

t,s)
2qds

]
< ∞ due to the boundedness of u, the

process {e−δ(s−t)Ψs(Zt,s − Zη
t,s)us}s≥t is square integrable under B. Hence

∫ ·
t
e−δ(s−t)Ψs(Zt,s −

Zη
t,s)(−u′s)dBB

s is a martingale under B. Then we have from (10) and (B.1) that

RU
t =

1

2Φt

EB
t

[ ∫ T

t

e−δ(s−t)ΨsZ
η
t,s|us|2ds

]
.

When Φt = Z1−η
t ,

RU
t =

1

2
EB
t

[ ∫ T

t

e−δ(s−t)ΨsZt,sZ
η−1
s |us|2ds

]
=

1

2
EU
t

[ ∫ T

t

e−δ(s−t)ΨsZ
η−1
s |us|2ds

]
.

Then

RU
t =EU

t

[ ∫ t̃

t

e−δ(s−t)
1

2
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)

∫ T

t̃

e−δ(s−t̃)
1

2
ΨsZ

η−1
s |us|2ds

]
=EU

t

[ ∫ t̃

t

e−δ(s−t)
1

2
ΨsZ

η−1
s |us|2ds+ e−δ(t̃−t)RU

t̃

]
.
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Non-Markovian utility index

For a given consumption stream c, which may not be Markovian, we use the theory of

stochastic maximum principle (see, e.g., Bismut (1978)) to characterize the worst-case belief

distortion in the following Lemma. We only present the result for the pessimistic utility in

(13), the optimistic utility is similar with UP,c and θP replaced by UO,c and θO, respectively.

Lemma 2. The worst-case belief distortion satisfies

u∗t =
θPΓt[1 + Et]

Ψt

Z1−η
t∧τ , (B.2)

for some d-dimensional processes Γ and E. The pessimistic utility UP,c follows the dynamics

dUP,ct =
[
δUP,c − δU(ct) +

θP

2Ψt

Z1−η
t∧τ |Γt|2

(
1− |Et|2

)]
dt+ Γ′tdB

B
t , U cT = εU(cT ). (B.3)

Proof of Lemma 2. Consider a fixed u and define its associated pessimistic utility index

UP,c,ut = EU
t

[ ∫ T

t

e−δ(s−t)δU(cs)ds+ e−δ(T−t)εU(cT ) +
1

θP
RU
t

]
.

The martingale representation theorem ensures the existence of a vector-valued process Γu

such that

dUP,c,ut =
[
δUP,c,ut − δU(ct)

]
dt−

{
1

2θP
ΨtZ

η−1
t∧τ |ut|2 − (Γut )

′ut

}
dt+ (Γut )

′dBB
t , (B.4)

with the terminal condition UP,c,uT = εU(cT ). We define the pessimistic utility of c as

UP,ct = inf
u
UP,c,ut . (B.5)

To identify the worst-case belief distortion u∗, we use the stochastic maximum principle

(cf. Bismut (1978)). Introduce the Hamiltonian

H(Z,U ,Γ, γ, Ũ , Γ̃, u) = γf(Z,U ,Γ, u) + Ũb(Z, u) + Γ̃′σ(Z, u),

where f(Z,U ,Γ, u) = −δU + δU(ct) +
[

1
2θP

ΨtZ
η−1
t∧τ |ut|2 − Γ′tut

]
, b(Z, u) ≡ 0, and σ(Z, u) = −Zu

are the drift and volatility of the state variable Z, respectively. The adjoint variables γ and Ũ
follow the dynamics

dγt =∂UHdt+ ∂ΓHdB
B
t , γ0 = 1,

dŨut =− ∂ZHdt+ ∂σHdB
B
t , ŨuT = 0,

where ∂UH, ∂ΓH, ∂ZH, ∂σH are partial derivatives with respect of H. Calculation shows that

2



γt = e−δtZt and

dŨut = −
[
e−δt η−1

2θP
ΨtZ

η−1
t∧τ |ut|2 − Γ̃ut ut

]
dt+

(
Γ̃ut
)′
dBB

t , ŨuT = 0.

Introduce Uut = eδtŨut and Γ
u

t = eδtΓ̃ut . Uu follows the dynamics

dUut = δUut dt−
[
η−1
2θP

ΨtZ
η−1
t∧τ |ut|2 − Γ

u

t ut

]
dt+

(
Γ
u

t

)′
dBB

t , UuT = 0. (B.6)

We can interpret Uut as the marginal utility or shadow price with respect to the state variable

Z.

The stochastic maximum principle implies that the optimizer u∗ for (B.5) necessarily

satisfies

∂uH(Z,UP,c,u∗ ,Γu∗ , γ, Ũu∗ , Γ̃u∗ , u∗) = 0.

Using γt = e−δtZt and Γ̃u
∗
t = e−δtΓ

u∗

t , the previous equation is reduced to

u∗t =
θP (Γu

∗
t + Γ

u∗

t )

Ψt

Z1−η
t∧τ , (B.7)

which is transformed to (B.2) with Et = Γ
u∗
t

Γu
∗
t

. Plugging (B.2) into (B.4), we obtain (B.3).

Proof of Propositions 1 and 2

We prove Proposition 1 and the proof of Proposition 2 is similar. The first result is a direct

consequence of (14). The second result is a consequence of the form of Z in (9).

Proof of Propositions 3 and 6

We will prove the statement for Proposition 6 and Proposition 3 is then a special case. We will

prove the statement for fP . The statement for fO can be proven similarly.

When It = P , recall ν = inf{s ≥ t : Is 6= It}, where I is a continuous time Markov process

with the intensity λOt = ΛO(Z1−η
t ) jumping from P toO. For any U, becauseBB is independent

of I, it follows from the Girsanov theorem for point processes (see e.g. Jacod (1975)) that

PU[ν > s
∣∣Fs] = βP (t, s), where βP (t, s) = exp

(
−
∫ s

t

λOu du
)
.

EU
t

[
V O
ν 1{ν≤T}

]
= EU

t

[ ∫ T

t

βP (t, s)λOs V
O
s ds

]
.

In the equations above, βP (t, s) is the probability that the state remains at P between t and s,

and βP (t, s)λOs ds can be thought of as the probability that the state transitions to O between

3



s and s+ ds. Using the previous two equations, we transform (A.2) to

V P
t = sup

π,c
inf
u
EU
t

[ ∫ T

t

βP (t, s)
[
F (cs, V

P
s ) +

1− γ
2θP

V P
s Z

η−1
s∧τ |us|2

]
ds

+ βP (t, T )εU(cT ) +

∫ T

t

βP (t, s)λOs V
O
s ds

]
.

(B.8)

Recall xt = logZt. Because of (9) the dynamics of x follow

dxt = −1
2
|ut|2dt− u′tdBB

t = 1
2
|ut|2dt− u′tdBU

t . (B.9)

The stopping time τ is reformulated as τ = inf{t ≥ 0 : xt ≤ x or xt ≥ x}, where x = log z and

x = log z. Dynamic programming implies that

Ṽt = βP (0, t)V P
t +

∫ t

0

βP (0, s)
[
F (cs, V

P
s ) +

1− γ
2θP

V P
s e

(η−1)xs|us|2 + λOs V
O
s

]
ds,

is a martingale under U when u, π, c are agent’s optimal strategy and t < τ . To calculate the

drift of Ṽ , we use equation (B.9) and apply Itô’s formula to derive

def(t,xt) = ef(t,xt)
[
∂tf + 1

2
|ut|2

(
∂2
xxf + ∂xf + (∂xf)2

)]
dt− ef(t,xt)∂xfu

′
tdB

U
t .

Moreover define c̃ = c
W

as the consumption-wealth ratio. Then

d
W 1−γ
t

1− γ
= W 1−γ

t

[
r + π′(µ− r − σu)− c̃− 1

2
γπ′Σπ

]
dt+W 1−γ

t π′σdBU
t , (B.10)

Combining the previous two equations, we obtain the drift of Ṽ (divided throughout by

βP (0, t)W 1−γef (t, xt))

r + π′(µ− r − σu)− c̃− 1
2
γπ′Σπ + 1

1−γ

[
∂tf

P + 1
2
|u|2(∂2

xxf
P + ∂xf

P + (∂xf
P )2)

]
− ∂xfPπ′σu

+ δ
1− 1

ψ

c̃1− 1
ψ e−

1
ν
fP − δ ν

1−γ + 1
2θP

e(η−1)x|u|2 + λO

1−γ

(
ef

O−fP − 1
)
.

This drift needs to be nonpositive for arbitrary (u, π, c) and zero for the optimal ones.

Therefore, when γ ∈ (0, 1), the HJB equation for fP is

0 = sup
π,c̃

inf
u

{
∂tf

P + 1
2
|u|2
(
∂2
xxf

P + ∂xf
P + (∂xf

P )2
)
− (1− γ)∂xf

Pπ′σu+ δνc̃1− 1
ψ e−

1
ν
fP

+ (1− γ)
[
r + π′(µ− r − σu)− c̃− 1

2
γπ′Σπ

]
− δν + 1−γ

2θP
e(η−1)x|u|2 + λO

(
ef

O−fP − 1
)}
.

(B.11)

The supremum and infimum change to infπ,c̃ supu in the previous equation when γ > 1.
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The first order condition in u yields

uP,∗ =
(1− γ)(1 + ∂xf

P )

∂2
xxf

P + ∂xfP + (∂xfP )2 + 1−γ
θP
e(η−1)x

σ′πP,∗.

This is the agent’s optimal belief choice if ∂2
xxf

P + ∂xf
P + (∂xf

P )2 + 1−γ
θP
e(η−1)x > 0. Plugging

the previous expression of uP,∗ into (B.11), the first-order condition for π yields

π∗ =
1

γeff,P
Σ−1(µ− r).

This is the agent’s optimal strategy when γeff,PΣ is positive definite. The agent’s optimal

choice of consumption wealth is

c̃P,∗ = δψe−
ψ
ν
fP .

When the state variable x reaches the boundaries x and x, x is absorbed there, and the

problem becomes one where the Cressie-Read penalty in (A.2) is

1−γ
2θP

V P
s e

(η−1)xτ |us|2, for s ≥ τ.

Effectively, this is an entropy penalty

1−γ
2θP (xτ )

V P
s |us|2, where θP (xτ ) = θe(1−η)xτ .

However, the Markov process I can still transition to the state O with the intensity

ΛO(e(1−η)xτ ). As a result, the boundary conditions of fP at x and x are specified by the value

f ent,P
x with the robust parameter θP (x) or θP (x). Setting the spatial derivatives to be zero in

(A.4), f ent,P
x , with x = x or x, satisfies the following ODE,

0 =∂tf
ent,P
x − δν + (1− γ)

[
r + (πent,P )′(µ− r − σuent,P )− 1

2
γ(πent,P )′Σπent,P

]
+ δψ ν

ψ
e−

ψ
ν
fent,P
x + 1−γ

2θP
e(η−1)x|uent,P |2 + ΛO(e(1−η)x)

(
ef

ent,O
x −feff,P

x − 1
)
,

f ent,P
x (T ) = log ε,

(B.12)

where

πent,P =
1

γ + θP (x)
Σ−1(µ− r), uent,P =

θP (x)

γ + θP (x)
σ′Σ−1(µ− r),

and f ent,O
x satisfies a similar ODE coupled with f ent,P

x .

Proof of Propositions 4 and 7

When the agent invests in the Lucas tree, her optimal consumption and investment problem

can be solved as in Section 2. Instead of constants µ, σ and r, µL, σL and r depend on the

5



state variable x. However, when the portfolio choice problem is solved in Proposition 6,

state variable x is already taken into account. Therefore, even though µL, σL, and r are now

random, no more state variable needs to be introduced and the function fP in (29) still solves

(A.4) with µ and σ therein replaced by µL and σL. The optimal belief and strategies are given

by (A.7), (A.8), and (A.9), when the agent’s sentiment state is pessimistic.

We prove the statement when I = P . The proof for the I = O case is similar. From

consumption market clearing and (A.9),

cP,∗t = δψe−
ψ
ν
fP (t,xt)Wt. (B.13)

Applying Itô’s formula on the right-hand side, yields

de−
ψ
ν
fP (t,xt) = −ψ

ν
e−

ψ
ν
fP (t,xt)

[
∂tf

P + 1
2
|u|2
(
∂2
xxf

P −∂xfP − ψ
ν
(∂xf

P )2
)]
dt+ ψ

ν
e−

ψ
ν
fP (t,xt)∂xf

Pu dBB
t .

Then using capital market clearing π∗ = 1 and (A.9), we obtain

de−
ψ
ν
fP (t,xt)Wt =Wtde

−ψ
ν
fP (t,xt) + e−

ψ
ν
fP (t,xt)dWt + d〈e−

ψ
ν
fP (t,xt),Wt〉t

=e−
ψ
ν
fPWt

[
− ψ

ν
∂tf

P − ψ
2ν
|u|2
(
∂2
xxf

P − ∂xfP − ψ
ν
(∂xf

P )2
)]
dt

+ e−
ψ
ν
fPWt(µ

L − δψe−
ψ
ν
fP )dt+ e−

ψ
ν
fPWt

ψ
ν
∂xf

PuσL dt

+ e−
ψ
ν
fPWt

[
ψ
ν
∂xf

Pu+ σL
]
dBB

t .

Using the previous dynamics and matching the drift and volatility on both sides of (B.13), we

find

µL,P = µc + ψ
ν
∂tf

P + ψ
2ν
|u|2
(
∂2
xxf

P − ∂xfP − ψ
ν
(∂xf

P )2
)

+ δψe−
ψ
ν
fP − ψ

ν
∂xf

PuσL,P , (B.14)

σL,P = σc − ψ
ν
∂xf

Pu. (B.15)

Plugging (B.15) into the right-hand side of (B.14), we transform µL,P into

µL,P = µc + ψ
ν
∂tf

P + ψ
2ν
|u|2
(
∂2
xxf

P − ∂xfP + ψ
ν
(∂xf

P )2
)

+ δψe−
ψ
ν
fP − ψ

ν
∂xf

Puσc (B.16)

Combining (A.7) and (B.16), we obtain from capital market clearing that

µL,P − rP = γeff,P (σL,P )2. (B.17)

Plugging (B.15) and (B.16) back into (A.4) and simplifying, we get (A.10). The expression for

u∗ in (A.12) is obtained by plugging (B.15) into (A.8) and solving for u∗. Finally, (39) follows

from combining (A.10), (B.16) and (B.17).

When x reaches the boundary x or x, fP is specified by F ent,P
x which is the value function

6



in an equilibrium with an entropy cost. F ent,P
x satisfies (A.13), which is obtained from (A.10)

by setting all spatial derivatives to be zero.

Proof of Proposition 5

To find its equilibrium (shadow) price, we first identify the state price density M for the

representative agent. Suppose that M follows the dynamics

dMt

Mt

= −rIt dt− ξIt dBU
t , M0 = 1, (B.18)

where rI is the equilibrium risk-free rate in the Lucas tree economy when the representative

agent is in the sentiment state I ∈ {O,P}. Because the shocks driving the regime switching

are independent of fundamental shocks, they are not priced. The market price of risk ξI is

given by

ξIt = λIt − u
I,∗
t . (B.19)

where λIt =
µL,It −rIt
σL,It

is the equilibrium Sharpe ratio of the Lucas tree. Combining (B.18) and

(B.19),

Mt = e−
∫ t
0 r

I
sdsE

(
−
∫ (

λIs − uI,∗s
)
dBU

s

)
t
.24 (B.20)

Define the risk-neutral measure Q via

dQ
dB

∣∣∣
FT

= E
(
−
∫
λIsdB

B
s

)
T
.

The stock is priced as

St =
1

Mt

EU
t

[ ∫ T

t

MsDsds
]

= EQ
t

[ ∫ T

t

e−
∫ s
t r

I
vdvDsds

]
. (B.21)

It follows from (B.21) that

St = EQ
t

[ ∫ T∧ν

t

e−
∫ s
t r

I
vdvDsds+ e−

∫ ν
t r

I
νSν1{ν≤T}

]
,

where ν = inf{s ≥ t | Is 6= It} is the next state switching time after t. Using the same argument

leading to (B.8), we obtain from the previous equation that

St = EQ
t

[ ∫ T

t

βI(t, u)e−
∫ u
t r

I
vdv
(
Du + λIuSu

)
du
]
, (B.22)

where βI(t, u) = exp
(
−
∫ u
t
λIvdv

)
and I = {O,P} \ I. Let `I = S/D be the price-dividend ratio

24Here E
(
−
∫
ξsdB

U
s

)
t

= exp
(
−
∫ t
0

1
2 |ξs|

2ds−
∫ t
0
ξsdB

U
s

)
is a stochastic exponential.
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when the agent’s sentiment state is I. It follows from (B.22) that

S̃t = e−
∫ t
0 (rIv+λIv)dvDt`

I(t, xt) +

∫ t

0

e−
∫ s
0 (rIv+λIv)dv

(
Ds + λIsDs`

I(s, xs)
)
ds

is a Q-martingale.

Given that the dynamics of x and D under Q are

dxt =
(
− 1

2
|uI,∗t |2 + uI,∗t λIt

)
dt− uI,∗t dBQ

t ,

dDt

Dt

=
(
µD − ρσDλIt

)
dt+ σD(ρdBQ

t +
√

1− ρ2dB⊥t ),

where BQ, defined via

BQ
t = BU

t +

∫ t

0

λIs − uI,∗s ds = BB
t +

∫ t

0

λIsds,

is a Brownian motion under Q. Equating the drift of S̃ to be zero, we get equation (B.23) for

`I :

∂t`
I + 1

2
|uI,∗|2∂2

xx`
I +
(
− 1

2
|u∗|2 +uI,∗λI−ρσDuI,∗

)
∂x`

I +
(
µD−ρσDλI−rI

)
`I +1+ΛI

(
`I−`I

)
= 0,

(B.23)

with the terminal condition

`I(T, ·) ≡ 0. (B.24)

Note that the previous equation is a pair of coupled equations for `O and `P .

To obtain µS,I and σS,I , we apply Itô’s formula to St = Dt`
I(t, xt) to obtain

dSt = d
(
Dt`

I(t, xt)
)

=Dt`
I(t, xt)

(∂t`I
`I
− 1

2
|uI,∗|2∂x`

I

`I
+

1

2
|uI,∗|2∂

2
xx`

I

`I
+ µD − uI,∗σDρ∂x`

I

`I

)
dt

+Dt`
I(t, xt)

[(
− uI,∗∂x`

I

`I
+ σDρ

)
dBB

t + σD
√

1− ρ2dB⊥t

]
.

Adding Dtdt on both sides and dividing by St = Dt`, we obtain

dSt +Dtdt

St
=
(∂t`I
`I
− 1

2
|uI,∗|2∂x`

I

`I
+

1

2
|uI,∗|2∂

2
xx`

I

`I
+ µD − uI,∗σDρ∂x`

I

`I
+

1

`I

)
dt

+
(
− uI,∗∂x`

I

`I
+ σDρ

)
dBB

t + σD
√

1− ρ2dB⊥t .

Matching the previous equation with equation (42), we obtain µS,I , σS,I , and σS,I,⊥.

Finally, to obtain the CAPM relation, we note that StMt +
∫ t

0
MsDsds is a PU-martingale. Then

the CAPM relation follows from combining (B.18), (B.19), and (42).
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Numerical procedure

We solve (A.4), (A.5), (B.12) in Proposition 6, (A.10), (A.11), (A.13) in Proposition 7, and (B.23),

(B.24) in Proposition 5 using finite difference implicit schemes. For the coupled equations

between pessimistic and optimistic utilities, we fix the optimistic utility, and numerically

solve the pessimistic utility. Then using the obtained pessimistic utility, we numerically solve

the optimistic utility. We iterate until convergence.

Appendix C Log utility

We study the portfolio choice problem for an agent with log utility by taking the scaling limit

of Proposition 6 as γ → 1. We focus on the pessimistic utility case without regime switching.

The optimistic utility case can be analyzed similarly and the regime-switching case can be

developed.

Proposition 8. Consider an agent with the pessimistic utility described in (15), where the

preference towards intertemporal consumption is logarithmic. The optimal portfolio choice

and the worse-case belief distortion is given by

π =
∂2
xxh+ ∂xh+ 1

θP
e(η−1)x

1 + ∂2
xxh+ ∂xh+ 1

θP
e(η−1)x

Σ−1(µ− r), (C.1)

u =
1

∂2
xxh+ ∂xh+ 1

θP
e(η−1)x

σ′π. (C.2)

where h satisfies

0 = ∂th+ 1
2
|u|2
(
∂2
xxh+∂xh

)
−δh−δ+δ log δ+r+π′(µ−r−σu)− 1

2
π′Σπ+ 1

2θ
e(η−1)x|u|2 = 0, (C.3)

with the terminal condition h(x, T ) = 0.

From (C.1) and (C.2), we observe that the portfolio choice for the log utility agent is still

dynamic. The log utility agent still hedges against the future belief variation. This can be also

seen from the following identity,

σu+ Σπ = µ− r,

which is obtained after combining (C.1) and (C.2). The variation of u drives the variation of π

so that the sum of σu and Σπ is always constant.

Proof. For the function fP in (29), define h via

h(t, x) =
fP (t, x)

1− γ
.
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Then the agent’s value function (after adding a constant− 1
1−γ ) is

V =
W 1−γe(1−γ)h − 1

1− γ
=
e(1−γ)(logW+h) − 1

1− γ
.

As γ → 1, the right-hand side above converges to logW+h, which is the form of value function

in the log utility case with entropy cost in Maenhout (2004), Appendix B.

From (A.4) with ΛO ≡ 0 and ν = 1, we derive the equation satisfied by h:

0 =∂th+ 1
2
|u|2
(
∂2
xxh+ ∂xh+ (1− γ)(∂xh)2

)
− δ

1−γ − (1− γ)∂xhπ
′σu

+ [r + π′(µ− r − σu)− 1
2
γπ′Σπ] + γ

1−γ δ
1
γ e
−1−γ

γ
h

+ 1
2θP

e(η−1)x|u|2 = 0,

(C.4)

where

π =
(
γ +

(1 + (1− γ)∂xh)2

∂2
xxh+ ∂xh+ (1− γ)(∂xh)2 + 1

θP
e(η−1)x

)−1

Σ−1(µ− r), (C.5)

u =
1 + (1− γ)∂xh

∂2
xxh+ ∂xh+ (1− γ)(∂xh)2 + 1

θP
e(η−1)x

σ′π. (C.6)

Here we consider ε = 1 in the bequest utility. Then the terminal condition for h is h(T, x) = 0.

Now send γ → 1 in (C.4), (C.5), and (C.6) to identify the limiting equation satisfied by h.

We first consider the limit of− δ
1−γ + γ

1−γ δ
1
γ e
−1−γ

γ
h
. When γ → 1, up to the first order of 1− γ,

− δ
1−γ + γ

1−γ δ
1
γ e
−1−γ

γ
h ≈
−δ + γδ

1
γ (1− 1−γ

γ
h))

1− γ
=
δ

1
γ − δ

1− γ
− δ

1
γ − δ

1
γ h.

By L’Hospital rule, limγ→1
δ

1
γ −δ
1−γ = δ log δ. Then

lim
γ→1
− δ

1−γ + γ
1−γ δ

1
γ e
−1−γ

γ
h

= −δ − δh+ δ log δ.

Using the previous identity, we obtain the limit of (C.4), (C.5), and (C.6) as (C.3), (C.1), and

(C.2).
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