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Abstract

We investigate biases in expectations across different settings through a large-scale
randomized experiment where participants forecast stable stochastic processes. The ex-
periment allows us to control forecasters’ information sets as well as the data generating
process, so we can cleanly measure biases in beliefs. We find that forecasts display sig-
nificant overreaction to the most recent observation. Moreover, overreaction is especially
pronounced for less persistent processes and longer forecast horizons. We also find that
commonly-used expectations models do not easily account for these variations in the
degree of overreaction across different settings. To explain the observed patterns of over-
reaction, we develop a tractable model of expectations formation with costly information
processing. Our model closely fits the empirical findings and generates additional pre-
dictions that we confirm in the data.
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1 Introduction

Expectations formation plays a critical role in economics. A growing body of research us-

ing survey data shows that expectations often exhibit significant biases. Across different

settings, however, the biases seem to vary. For instance, some studies document substan-

tial overreaction, whereas others find less overreaction or some degree of underreaction.1

These results raise an important question: why do biases in expectations vary across set-

tings? Investigating this issue is a necessary step towards a unified understanding of biases

in expectations, but systematic examination has been limited.

In this paper, we present new empirical evidence and theoretical analyses to illumi-

nate how expectation biases vary with the persistence of the data generating process (DGP)

and the forecast horizon. We begin with a large-scale randomized experiment to cleanly

document the biases in expectations for different stochastic processes. Our experimental

approach allows us to address three major concerns for studying expectations using sur-

vey data. First, we can control forecasters’ information sets, which are not observable to

the econometrician in survey data.2 Second, we know the DGP and we can determine it,

whereas the DGP is difficult for the econometrician to pin down in survey data. Finally, we

can also control forecasters’ payoff functions, whereas forecasters could have considerations

other than accuracy in survey data. Overall, the experiment allows us to measure biases in

forecasts in a precise way, trace out the structure of these biases and their variations across

settings, and investigate whether commonly-used models align with the empirical evidence.

In our experiment, participants make forecasts of simple AR(1) processes. They are ran-

domly assigned to a condition with a given AR(1) process with persistence ρ drawn from

{0, 0.2, 0.4, 0.6, 0.8, 1}; the mean is zero and the conditional volatility is 20. Participants ob-

serve 40 past realizations at the beginning and then make forecasts for another 40 rounds. In

1For overreaction in expectations, see De Bondt and Thaler (1990), Amromin and Sharpe (2013), Green-
wood and Shleifer (2014), Gennaioli, Ma and Shleifer (2016), Bordalo, Gennaioli, La Porta and Shleifer (2019),
Bordalo, Gennaioli, Ma and Shleifer (2020c), Barrero (2020), among others for evidence from forecasts of finan-
cial market and macroeconomic outcomes. For underreaction, see Abarbanell and Bernard (1992), Bouchaud,
Krueger, Landier and Thesmar (2019), and Ma, Ropele, Sraer and Thesmar (2020) for evidence from forecasts
of companies’ near-term earnings.

2One workaround is to predict forecast errors using forecast revisions, since revisions are supposed to be
within the forecaster’s information set (Bordalo et al., 2020c). However, this approach has limitations, which
we explain in detail in Section 2.2. Among other things, this method may be unreliable when the process is
transitory, in which case the variance of forecast revisions may approach zero if beliefs are close to rational.
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each round, participants observe a new realization and report one- and two-period-ahead

forecasts. In follow-up experiments, we also extend the forecast horizon and elicit five- and

ten-period-ahead forecasts.

Our main empirical results are as follows. First, even though the process is simple and

stable, rational expectations are strongly rejected in our data. In particular, forecasts in the

data display strong overreaction to recent observations relative to the rational benchmark:

the forecasts are systematically too high when the past realization is high, and vice versa.

This feature is robust and it does not depend on whether participants know the process is

AR(1), which we show using a sample of MIT students who understand AR(1) processes.

Second and importantly, we find that forecasts display more overreaction when the pro-

cess is more transitory. This result echoes the patterns Bordalo et al. (2020c) observe in sur-

vey data. In the experiment, however, we can measure the degree of overreaction more

precisely. Specifically, we calculate the persistence implied by participants’ forecasts and

compare it with the actual persistence of the process. This comparison provides a clear mea-

sure of overreaction in our setting. In the data, the implied persistence is close to one when

the process is a random walk. When the actual persistence is lower, the implied persistence

decreases but less than one for one, so it is higher than the actual persistence (i.e., forecasts

overreact) especially when the process is more transitory. For instance, the implied persis-

tence is 0.85 when the actual persistence is 0.6 and 0.45 when the actual process is i.i.d.

Third, we find that commonly-used expectations models do not perform well in explain-

ing how biases vary with process persistence. The older adaptive or extrapolative models

generate forecast-implied persistence that does not vary much with the actual persistence,

so overreaction in these models is too strong for more transitory processes. In contrast, more

recent models such as constant gain learning (Evans and Honkapohja, 2001; Nagel and Xu,

2019) and diagnostic expectations (Bordalo, Gennaioli and Shleifer, 2018) generate implied

persistence that varies too much with the actual persistence, so overreaction is too weak

for more transitory processes. For instance, diagnostic expectations are the same as rational

expectations for i.i.d. processes, which is not the case in the data.

To account for the patterns of overreaction observed in the data, we provide a simple

model of costly information processing where the most recent observation has a dispropor-

tionate influence on expectations. In the model, the agent relies on the most recent observa-
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tion to assess the long-run mean of the process. In addition, the agent can process further

information to form a better estimate of the long-run mean, subject to a cost. We refer to

the information actively utilized as what is “on top of the mind,” which can be especially

affected by the recent observation when information processing is costly. In this case, fore-

casts naturally overreact to the latest observation. If information processing is costless, on

the other hand, we obtain the rational benchmark. Moreover, the partial dependence of

the long-run mean assessment on the most recent observation leads to greater overreaction

when the process is less persistent, in line with what we observe in the data. Such biases

regarding the long-run mean also predict greater overreaction when the forecast horizon

is longer; we examine these additional testable predictions later and find that the model

produces a good fit of the term structure of forecast biases as non-targeted moments.

We take our model to the data by minimizing the mean squared error with respect to all

the forecasts in our baseline experiment (we test other models in the literature in the same

way). We then calculate the implied persistence (regression coefficient of the forecast on the

most recent observation) in the experimental data and the value generated by the model.

The implied persistence based on our model matches that in the data closely for all values

of ρ. We also design additional experiments to directly influence what is on top of the mind,

by drawing participants’ focus away from the most recent observation. In one condition,

we show a red line at zero in the experimental interface. In another condition, we require

participants to click on the realization ten periods ago before they can make new forecasts in

each round. In both cases, the degree of overreaction decreases relative to that in the baseline

condition, in line with predictions of our model.

In addition, we study how overreaction varies with the forecast horizon. Recent re-

search indicates that overreaction appears to be stronger when the forecast horizon is longer

(Bouchaud et al., 2019; Bordalo et al., 2019; Wang, 2019; d’Arienzo, 2020). We show that this

pattern is quite strong in our experimental data. Furthermore, our model naturally gener-

ates more overreaction at longer horizons, since long-term forecasts are more affected if the

long-run mean assessment responds too much to recent observations. To assess the model’s

performance with respect to the term structure of forecast biases, we use model parameter

estimated from one-period-ahead forecasts to generate long-horizon forecasts predicted by

the model. We compute the implied persistence based on the long-horizon forecasts in the
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data and in the model as non-targeted moments. For forecast horizons of two, five, and ten

covered by our experiments, our model closely matches the degree of overreaction observed

in the data for all values of ρ.

Finally, we provide suggestive evidence from financial markets. We present motivating

evidence that overreaction in equity analysts’ forecasts of firms’ sales growth is stronger

when sales growth is less persistent. Moreover, the “value premium" (i.e., companies with

a high book-to-market ratio tend to have higher stock returns), which is often viewed as a

reflection of overreaction, is also stronger among firms with less persistent sales growth.

Literature Review. Our work is related to three branches of literature. First, our empir-

ical findings complement recent studies using survey data discussed in the first paragraph.

As mentioned before, while analyses using survey data are very valuable, they face major

obstacles given that researchers do not know forecasters’ information sets, payoff functions,

and the DGP. A key contribution of our paper is implementing a large-scale experiment to

cleanly connect biases in expectations with both the properties of the underlying process

and the forecast horizon.

Second, our paper also contributes to experimental studies of forecasts (see Assenza, Bao,

Hommes and Massaro (2014) for a survey). Prior work on forecasting stochastic processes

includes Hey (1994), Frydman and Nave (2016) and Beshears, Choi, Fuster, Laibson and

Madrian (2013). Most closely related, Reimers and Harvey (2011) also document that the

forecast-implied persistence is higher than the actual persistence for transitory processes,

which indicates the robustness of this phenomenon, but they do not test models or analyze

the term structure of forecasts. We offer an extensive review of the experimental literature

in Table A.1. Overall, relative to existing research, we provide an experiment with a large

scale, a wide range of settings, and diverse demographics; we also collect the term structure

of forecasts. In addition, we use the experiment to investigate a number of commonly-used

models, while prior studies tend to focus on testing a particular type of model.

Finally, we contribute to the emerging literature which proposes portable models of ex-

pectations formation that allow for deviations from rational expectations. The diagnostic

expectations model of Bordalo, Gennaioli and Shleifer (2018) is a leading example, though

it does not explain biases when the process is i.i.d. as mentioned above. Some modeling

techniques we use are related to the literature on noisy perception and rational inattention
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(Woodford, 2003; Sims, 2003). This literature has focused on frictions in perception (e.g.,

imperfect perception of recent observations) and the utilization of past information is fric-

tionless. Instead, our model emphasizes frictions in exploiting past information, which is

key for generating overreaction. Another set of models postulate that forecasters use an in-

correct value of the persistence ρ (Gabaix, 2018; Angeletos, Huo and Sastry, 2020). We find

that a given “mistaken" ρ cannot simultaneously account for the degree of overreaction in

short-term and long-term forecasts. In particular, if using an incorrect ρ is the main bias,

overreaction will dissipate for long-term forecasts, which is not the case in the data.

Several recent models examine the role of memory in belief formation, which also fea-

ture frictions in exploiting past information. Bordalo, Gennaioli and Shleifer (2020b), Bor-

dalo, Coffman, Gennaioli, Schwerter and Shleifer (2020a), and Bordalo, Conlon, Gennaioli

and Kwon (2021) build on representativeness (Kahneman and Tversky, 1972) and associa-

tive recall (Kahana, 2012). Wachter and Kahana (2020) present a retrieved-context theory of

beliefs to model associative recall.3 The most closely related analysis is da Silveira, Sung and

Woodford (2020). They present a dynamic model of noisy memory and show its predictions

for empirical findings in our experiment. In their model, past information is summarized

by a memory state formed before each period; when the memory is imprecise, the agent

optimally puts more weight on the latest observation, which generates overreaction. In our

model, the costly utilization of past information can reflect memory constraints, but it can

also arise from other frictions in information processing that lead to a disproportionate focus

on the latest observation (such as “availability" biases more generally).

Although we focus on overreaction given our empirical findings, we provide an exten-

sion of our model in Appendix D which accommodates underreaction by introducing noisy

signals to the belief formation process. These noisy signals can play a role in survey data

(Coibion and Gorodnichenko, 2015), but are unlikely to be first-order in our simple forecast-

ing experiment (so overreaction dominates here). In this extension, the relative degree of

overreaction is still stronger when the process is less persistent, consistent with the sugges-

tive evidence we present in Sections 2.1 and 6.4.

3In addition, Nagel and Xu (2019) and Neligh (2020) study applications of memory decay. In empirical
analyses, Enke, Schwerter and Zimmermann (2020) experimentally test how associative recall affects beliefs.
Hartzmark, Hirshman and Imas (2021) and D’Acunto and Weber (2020) also find evidence consistent with
memory playing a role in decision making.
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The rest of the paper proceeds as follows. Section 2 discusses stylized facts from survey

data and the limitations of these analyses, which motivate our experiment. Section 3 de-

scribes the experiment. Section 4 presents our main finding that overreaction is stronger for

less persistent processes, and shows that commonly-used models do not easily account for

the evidence. Section 5 presents our model and shows that the model fits the data well. Sec-

tion 6 investigates further tests of our model and the additional prediction that overreaction

is stronger at longer horizons. We also provide robustness checks about model assumptions

and document suggestive evidence in the stock market. Section 7 concludes.

2 Motivating Facts

To motivate our experimental investigation, we first describe stylized facts from survey fore-

casts of macroeconomic outcomes and firms’ earnings. We show some robust patterns that

emerge from these analyses and discuss the key limitations of survey data.

2.1 Overreaction and Process Persistence: Evidence from the Field

A major challenge for analyzing expectations using survey forecast data is that the true DGP

and forecasters’ information sets are both unknown. Taking inspiration from Coibion and

Gorodnichenko (2015), Bordalo et al. (2020c) observe that one idea is to capture belief up-

dating using forecast revisions by individual forecasters: revisions should incorporate news

that a forecaster responds to and should be part of the information set. When a forecaster

overreacts to information, revisions at the individual level would over-shoot (e.g., upward

forecast revisions would predict realizations below forecasts). The empirical specification is

the following, which regresses forecast errors on forecast revisions in a panel of quarterly

individual-level forecasts:

xt+h − Fi,txt+h︸ ︷︷ ︸
Forecast Error

= a + b (Fi,txt+h − Fi,t−1xt+h)︸ ︷︷ ︸
Forecast Revision

+vit, (2.1)

where Fi,txt+1 is the forecast of individual i of outcome xt+h. For each series, we obtain a

coefficient b (henceforth the “error-revision coefficient”). When overreaction is present, b
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should be negative, and vice versa (Bordalo et al., 2020c).

Bordalo et al. (2020c) analyze professional forecasts of 22 series of macroeconomic and

financial variables. They find that the error-revision coefficient b is generally negative, and

it is more negative for processes with lower persistence. They interpret this pattern as an

indication that overreaction tends to be stronger when the actual process is more transitory.

In Figure I, Panel A, we use Survey of Professional Forecasters (SPF) data and replicate this

finding. Here we use the simple one-period-ahead forecasts, namely h = 1. The y-axis

shows the coefficient b for different series, and the x-axis shows the autocorrelation of each

series as a simple measure of persistence. We see that the coefficient b is more negative (i.e.,

overreaction is stronger) when the actual series is less persistent.

In Figure I, Panel B, we also document similar results using analysts’ forecasts of firms’

sales from the Institutional Brokers’ Estimate System (IBES). Again we use one-period ahead

forecast, namely h = 1. We normalize both actual sales and projected sales using lagged

sales, and the frequency is quarterly. Results are very similar if we use an annual frequency,

or using earnings forecasts instead of sales forecasts.4 We run one regression in the form of

Equation (2.1) for each firm i to obtain coefficient bi. We also compute the autocorrelation of

the actual sales growth process ρi. Figure I, Panel B, shows a binscatter plot of the average

bi in twenty bins of ρi. Here, the majority of firms exhibit underreaction (as previously

documented by Bouchaud et al. (2019)), but the key fact remains: the coefficient bi is more

negative when the actual sales process of the firm is less persistent.

2.2 Challenges in Field Data

Although results from the error-revision regressions in survey data are intriguing, they can

be difficult to interpret unequivocally for several reasons.

First, it is difficult to estimate b precisely for transitory processes when expectations are

4Earnings forecasts have several complications relative to sales forecasts. First, earnings forecasts primarily
take the form of earnings-per-share (EPS), which may change if firms issue/repurchase shares, or have stock
splits/reverse splits. This requires us to transform EPS forecasts to implied forecasts about total firm earnings,
which could introduce additional measurement error. Second, the definition of earnings firms use for EPS
can be informal (“pro forma" earnings, instead of formal net income according to the Generally Accepted
Accounting Principles (GAAP). As a result, matching earnings forecasts properly with actual earnings can be
more challenging. In comparison, sales forecasts are directly about total sales of the firm, and the accounting
definition of sales is clear (based on GAAP).
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Figure I: Forecast Error on Forecast Revision Regression Coefficients

In Panel A, we use SPF data on macroeconomic forecasts and estimate a quarterly panel regression using each
individual j’s forecasts for each variable xi: xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 − Fi,j,t−1xi,t+1) + vi,j,t, where
the left hand side variable is the forecast error and the right hand variable is the forecast revision for each fore-
caster j. The y-axis plots the regression coefficient bi for each variable, and the x-axis plots the autocorrelation
of the variable. The variables include quarterly real GDP growth, nominal GDP growth, GDP price deflator
inflation, CPI inflation, unemployment rate, industrial production index growth, real consumption growth,
real nonresidential investment growth, real residential investment growth, real federal government spending
growth, real state and local government spending growth, housing start growth, unemployment rate, 3-month
Treasury yield, 10-year Treasury yield, and AAA corporate bond yield. In Panel B, we use IBES data on analyst
forecasts of firms’ sales and estimate a quarterly panel regression using individual analyst j’s forecasts for each
firm i’s sales xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 − Fi,j,t−1xi,t+1) + vi,j,t, where the left hand side variable is
the forecast error and the right hand variable is the forecast revision for each forecaster j. The y-axis plots the
regression coefficient bi, and the x-axis plots the autocorrelation of firm i’s sales. For visualization, we group
firms into twenty bins based on the persistence of their sales, and present a binscatter plot. Both actual and
projected sales are normalized by lagged book assets.
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close to rational. In this case, revisions are close to zero, so the regression coefficient is not

well estimated. As an illustration, in Figure A.1, Panel A, we show the error-revision co-

efficient b from simulations where we simulate forecasters under diagnostic expectations

(Bordalo et al., 2018, 2020c) for AR(1) processes with different levels of persistence. By con-

struction, the simulated coefficient (shown by the solid line) is on average similar to theoret-

ical predictions in the diagnostic expectations model (Bordalo et al., 2020c). Meanwhile, the

dashed lines show that the confidence intervals become very wide when the process persis-

tence is below 0.5.5 The intuition in this example is that the variance of the right-hand-side

variable, the forecast revision, goes to zero for i.i.d. processes when expectations are close to

rational (see discussion on asymptotic standard errors in Appendix B.1).

Second, the error-revision coefficient b is not necessarily a direct metric for the degree

of overreaction (i.e., how much subjective beliefs over-adjust relative to the rational bench-

mark). This empirical coefficient does not directly map into a structural parameter, and its

interpretation can be model dependent. In particular, since the forecast revision in period t

is the change between the subjective forecast from t− 1 to t (Ftxt+h − Ft−1xt+h), its size and

variance are affected by the past forecast (Ft−1xt+h), so the magnitude of the error-revision

coefficient b can be path dependent. In addition, the error-revision coefficient b can be sub-

ject to the critique that if the forecast Ftxt+h is measured with noise, the regression coefficient

b could be mechanically negative, given that Ftxt+h affects both the right-hand side (forecast

revision) and the left-hand side (forecast error) of the regression.

Taken together, the error-revision coefficient has been a popular empirical measure in

the field data as it helps researchers address the challenge of not observing forecasters’ in-

formation sets. Nonetheless, the error-revision coefficient can be inadequate for providing a

precise measure of biases in expectations.

A more precise way to study the properties of subjective beliefs is to estimate the implied

persistence from the forecasts ρs,h, which is the coefficient of regressing Ftxt+h on xt when the

process is AR(1). We can then compare it with the actual persistence ρ of the process. When

ρs,h > ρh, there is overreaction, in the sense that the forecast displays excess sensitivity to

5For AR(1) processes, the diagnostic forecast is Eθ
t xt+1 = Etxt+1 + ρεt, where Etxt+1 is the rational forecast

in period t, ρ is the AR(1) persistence, and εt is the shock to the process xt in period t. When the process is
i.i.d., the diagnostic forecast becomes the same as the rational forecast, and the error-revision coefficient is not
well defined.
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the latest observation xt (i.e., when xt is high, the forecast tends to be too high, and vice

versa). Figure A.1, Panel B, shows via simulations that this approach is reliable for all levels

of persistence. This alternative approach does not suffer from the shortcomings of the error-

revision coefficient for two main reasons. First, the variance of the right-hand-side variable,

the past realization, does not vanish to zero as ρ decreases. Second, the magnitude of ρs,h is

much easier to interpret. For instance, ρs
h can be translated into a degree of overreaction by

normalizing it using the rational sensitivity, ρh:

ζ = ρs
h/ρh. (2.2)

If ζ = 2, for instance, then the subjective forecast responds twice as much as the rational

forecast.6

Nonetheless, this approach is only meaningful if forecasters’ information sets are re-

stricted to past realizations of the process, and it requires that the DGP is truly AR(1). This

is why we now turn to our experimental setting where we control both the forecasters’ in-

formation set and the DGP.

3 Experiment Design

We design a simple forecasting experiment, where the DGP is an AR(1) process:

xt+1 = (1− ρ)µ + ρxt + εt. (3.1)

The experiment begins with a consent form, followed by instructions and tests. Participants

first observe 40 past realizations of the process. Then, in each round, participants make fore-

casts and observe the next realization, for 40 rounds. After the prediction task, participants

answer some basic demographic questions.

Each participant is only allowed to participate once. Participants include both individ-

6There is an approximate relationship between ζ and the error-revision coefficient. Specifically, 1/(1+ b) =
Var(FR)

Cov(FE+FR,FR) . If we set Ft−1xt+h as a constant, then this coefficient is the same as ζ. Accordingly, a negative
error-revision coefficient, often interpreted as evidence of overreaction, implies ζ > 1, i.e., overreaction of the
subjective belief to the latest observation.
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uals across the US from Amazon’s online Mechanical Turk platform (MTurk) and MIT un-

dergraduates in Electrical Engineering and Computer Science (EECS). For MTurk, we use

HITs titled “Making Statistical Forecasts.”7 For MIT students, we send recruiting emails to

all students with a link to the experimental interface.

3.1 Experimental Conditions

There are four main sets of experiments, which we describe below and summarize in Table

A.2 in the Appendix.

Experiment 1 (Baseline, MTurk). Experiment 1 is our baseline test, conducted in Febru-

ary 2017 on MTurk. We use six values of ρ: {0, .2, .4, .6, .8, 1}. The volatility of ε is 20. The

constant µ is zero. Participants are randomly assigned to one value of ρ. Each participant

sees a different realization of the process. At the beginning, participants are told that the pro-

cess is a “stable random process." In each round, after observing realization xt, participants

predict the value of the next two realizations xt+1 and xt+2. Figure A.2 provides a screenshot

of the prediction page. There are 207 participants in total and about 30 participants per value

of ρ.

Experiment 2 (Long Horizon, MTurk). Experiment 2 investigates longer horizon fore-

casts. We assign participants to conditions identical to Experiment 1, except that we collect

forecasts of xt+1 and xt+5 (instead of xt+2), with ρ ∈ {.2, .4, .6, .8}. Experiment 2 was con-

ducted in June 2017 on MTurk. There are 128 participants in total.

Experiment 3 (Describe DGP, MIT EECS). In Experiment 3, we study whether provid-

ing more information about the DGP affects forecasts. To make sure that participants have

a good understanding of the AR(1) formulation, we perform this test among MIT under-

graduates in Electrical Engineering and Computer Science (EECS). Experiment 3 was con-

ducted in March 2018 and there are 204 participants. We use the same structure as in Ex-

periment 1, with AR(1) persistence ρ ∈ {.2, .6}. For each persistence level, the control group

7The MTurk platform is commonly used in experimental studies (Kuziemko, Norton, Saez and Stantcheva,
2015; D’Acunto, 2015; Cavallo, Cruces and Perez-Truglia, 2017; DellaVigna and Pope, 2017, 2018). It offers
a large subject pool and a more diverse sample compared to lab experiments. Prior research also finds the
response quality on MTurk to be similar to other samples and to lab experiments (Casler, Bickel and Hackett,
2013; Lian, Ma and Wang, 2018).
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is the same as Experiment 1, and the process is described as “a stable random process.”

For the treatment group, we describe the process as “a fixed and stationary AR(1) process:

xt = µ + ρxt−1 + et, with a given µ, a given ρ in the range [0,1], and et is an i.i.d. random

shock.” Thus there are 2× 2 = 4 conditions in total, and participants are randomly allocated

to one of them. At the end of the experiment, we further ask students questions testing their

prior knowledge of AR(1) processes.8

Experiment 4 (Additional Test, MTurk). In Experiment 4, we study how changing the

focus of participants affects the results. We have a baseline condition that is the same as

Experiment 1 and two treatment conditions with different design features discussed in more

detail in Section 6.1. We also have a condition where participants forecast xt+1 and xt+10.

All conditions have ρ ∈ {0, .2, .4, .6, .8, 1}. Participants are randomly assigned into a given

condition and a given level of ρ. As before, there are about 30 participants for each treatment

condition and level of ρ. Experiment 4 was conducted in March 2021 on MTurk.

We focus on AR(1) processes because they are simple and therefore make the definition

of rational expectations relatively clear. They are easy to learn as discussed more in Section

4. In addition, as Fuster, Laibson and Mendel (2010) point out, in finite samples, ARMA

processes with longer lags are difficult to statistically tell apart from AR(1) processes. Finally,

as discussed in Section 2.2, it is also straightforward to assess the degree of overreaction in

this setting.

3.2 Payments

We provide fixed participation payments and incentive payments that depend on the per-

formance in the prediction task. For the incentive payments, participants receive a score

for each prediction that increases with the accuracy of the forecast (Dwyer, Williams, Bat-

talio and Mason, 1993; Hey, 1994): S = 100×max(0, 1− |∆|/σ), where ∆ is the difference

between the prediction and the realization, and σ is the volatility of the noise term ε. This

loss function ensures that a rational participant will optimally choose the rational expecta-

tion, and it ensures that payments are always non-negative. A rational agent would expect

8We do not disclose the values of µ and ρ, since the objective of our study is to understand how people form
forecasting rules; directly providing the values of µ and ρ would make this test redundant.
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to earn a total score of about 2,800.9 We calculate the cumulative score of each participant,

and convert it to dollars. The total score is displayed on the top left corner of the prediction

screen (see Figure A.2).

For experiments on MTurk (Experiments 1, 2, and 4), the base payment is $1.8; the con-

version ratio from the score to dollars is 600, which translates to incentive payments of about

$5 for rational agents. For experiments with MIT students (Experiment 3), the base payment

is $5; the conversion ratio from the score to dollars is 240, which translates to incentive pay-

ments of about $12 for rational agents.

3.3 Summary Statistics

Table A.3 shows participant demographics and other experimental statistics. Overall, MTurk

participants are younger and more educated than the U.S. population. The mean duration

of the experiment is about 18 minutes, and the hourly compensation is in the upper range of

tasks on MTurk. As expected, MIT EECS undergrads are younger. Their forecast duration

and overall forecast scores are similar to the MTurk participants.10

4 Main Empirical Findings

In this section, we present the main empirical findings from the experiment. In Section 4.1,

we present the key stylized facts, connecting to the field data evidence discussed in Section

2. In Section 4.2, we then analyze whether commonly-used models of expectations are in

line with these key facts.

9E(1 − |xt+1 − Ft|/σ) is maximal for a forecast Ft equal to the 50th percentile of the distribution of xt+1
conditional on xt. Given that our process is symmetric around the rational forecast, the median is equal to the
mean, and the optimal forecast is equal to the conditional expectation. Whether the rational agent knows the
true ρ (Full Information Rational Expectations) or predicts realizations using linear regressions (Least-Square
Learning) does not change the expected score by much. In simulations, over 1,000 realizations of the process,
we find that expected scores of the two approaches differ by less than .3%.

10The participation constraint is likely to be satisfied. For the MTurk tests, the average realized total payment
(participation plus incentive payment) is about $5 (for a roughly 15 minute task), which is high compared to
the average pay rate. For the MIT tests, the average realized total payment is around $15. The payments are
sufficiently attractive to recruit 200 EECS undergrads out of 1,291 students within six hours. For the incentive
compatibility constraint, recent work by DellaVigna and Pope (2017) show that participants provide high effort
even when the size of the incentive payment is modest, and the power of incentives does not appear to be a
primary issue in this setting.
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4.1 Basic Fact: More Overreaction for More Transitory Processes

We begin by presenting the basic facts from our experiments. Figure II, Panel A, shows that

the feature in SPF and IBES data discussed in Section 2 also holds in our experiment. Using

data from Experiment 1, we have AR(1) processes with persistence from 0 to 1, and we

run the error-revision regression in Equation (2.1), as we did on field data, for each level of

persistence. As before, the y-axis shows the error-revision coefficient, and the x-axis shows

the persistence of the process. Like in the field data, we see that the coefficient b is more

negative for transitory processes.

Given the limitations of the error-revision regression approach explained in Section 2,

a natural and more precise alternative in our experiment is the persistence implied by the

forecast. The implied persistence is measured as the coefficient ρs
1 in the regression:

Fitxt+1 = c + ρs
1xt + uit, (4.1)

estimated in the panel of individual-level forecasts, for each level of AR(1) persistence ρ.11

As the Full Information Rational Expectation (FIRE) is given by ρxt, the difference between

ρs
1 and ρ provides a direct measure of the extent of overreaction. This measure is reliable

for AR(1) processes as we show in Section 2, and forecasters’ information sets are relatively

clear in the experiment.

In Figure II, Panel B, we plot the implied persistence ρs
1 against the true ρ. We see that

when ρ = 1, ρs
1 is roughly one (i.e., the subjective and rational forecasts have roughly the

same sensitivity to xt). When ρ is smaller, ρs
1 declines, but not as much. When ρ = 0, ρs

1

is roughly 0.45 (i.e., the sensitivity of the subjective forecast to xt is much larger than that

under the rational benchmark).12

Overall, in the experiment, by explicitly controlling for the DGP and forecasters’ informa-

tion sets, we can establish clearly that overreaction is stronger for more transitory processes.

11As in Bordalo et al. (2020c), we can also estimate the error-revision coefficient for each forecaster, and take
the mean or median coefficient for each level of ρ. Similarly, we can estimate the implied persistence for each
forecaster, ρs

1,i, and take the mean or median for each level of ρ. The results are very similar.
12We can also compute the ratio of relative overreaction ζ =

ρs
h

ρh as defined in Equation (2.2). Figure A.3 plots
the value of ζ for each level of ρ (except when ρ = 0 where ζ is not well defined). Since ρs

1 decreases less than
one-for-one with ρ, the degree of overreaction is higher when the process is less persistent.
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Figure II: Overreaction and Persistence of Underlying Process: Experimental Data

In Panel A, we use data from Experiment 1 and for each level of AR(1) persistence ρ, we estimate a panel
regression of forecast errors on forecast revisions: xt+1 − Fi,txt+1 = a + b(Fi,txt+1 − Fi,t−1xt+1) + vit. The y-axis
plots the regression coefficient b, and the x-axis plots the AR(1) persistence ρ. In Panel B, we estimate the
implied persistence ρs from Fitxt+1 = c + ρsxt + uit for each level of AR(1) persistence ρ. The y-axis plots the
implied persistence ρs, and the x-axis plots the AR(1) persistence ρ. The red line is the 45-degrees line, and
corresponds to the implied persistence under Full Information Rational Expectations (FIRE). The vertical bars
show the 95% confidence interval of the point estimates.
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FIRE vs. In-Sample Least Square Learning. The comparisons above use the FIRE bench-

mark of true ρ. The results are similar if we instead use in-sample least square learning as

the rational benchmark. Specifically, the in-sample least square estimates are formed as:

Êtxt+h = ât,h +
k=n

∑
k=0

b̂k,h,txt−k. (4.2)
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In period t the forecaster predicts xt+h using lagged values from xt−k up to xt; parameters

ât,h and b̂k,h,t are estimated, on a rolling basis, using OLS and past realizations until xt. The

estimated coefficients may differ based on persistence ρ. We set n = 3, but results are not

sensitive to the number of lags.

In our data, the difference between Êtxt+h and FIRE is small. The top panel of Figure A.4

shows that the mean squared difference between these two expectations is small, and does

not decrease much after 40 periods. This is because our AR(1) processes are very simple,

and a few dozen data points are enough for least square forecasts to be reasonably accurate.

It also shows that the mean squared difference between the least square forecast and the

actual forecasts are substantial, and does not change much across different periods. The

bottom panel shows that the persistence implied by least square learning is about the same

as the true ρ. Accordingly, in the rest of the paper we use FIRE in our baseline definitions,

but all the results are very similar if we use the in-sample least square Êtxt+h instead.

Effect of Linear Prior. We also analyze whether explicitly providing a linear prior affects

the results. In Experiment 1 with participants from the general population, we describe the

process as a “stable random process" (given that most of these participants may not know

what an AR(1) process means). In Experiment 3 with MIT EECS students, we tell half of

the participants that the DGP is AR(1) with fixed µ and ρ (treatment group), and half of

the participants the process is a “stable random process” (control group). In Figure A.5, we

show that whether this information was provided has no discernible impact no discernible

impact on the properties of forecast errors. In Panel A , we plot the distributions of the

forecast errors, which are almost identical in the treatment vs. control group. In Panel B, we

find that the predictability of forecast errors conditional on the latest observation xt is also

similar in the treatment vs. control group. In both samples, forecasts tend to be too high

when xt is high (overreaction), and the magnitude of the bias is about the same. Table A.4

shows that the implied persistence is also similar in both the treatment and control groups.

Overall, we find that explicit descriptions of the AR(1) process do not seem to affect the basic

patterns in the data. Put differently, participants do not seem to enter the experiment with

complicated nonlinear priors.

Stability across Demographics. Figure A.6 shows both the error-revision coefficient b
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and implied persistence ρs
1 against ρ in different demographic groups. In all cases, the main

patterns are stable.

4.2 Testing Models of Expectations

We now use the data from our experiments and the key fact above to examine the perfor-

mance of expectation formation models.

A. Models of Expectations

We begin by laying out commonly-used models of expectations below.

Backward-Looking Models

We begin with older “backward-looking” models, which specify fixed forecasting rules

based on past data and do not incorporate properties of the process (i.e., are not a function

of ρ). The term structure of expectations in these models is not well defined, so we focus on

one-period ahead forecasts.

1. Adaptive expectations

Adaptive expectations have been used since at least the work of Cagan (1956) on inflation

and Nerlove (1958) on cobweb dynamics. The standard specification is:

Ftxt+1 = δxt + (1− δ)Ft−1xt. (4.3)

2. Extrapolative expectations

Extrapolative expectations have been used since at least Metzler (1941), and are some-

times used in studies of financial markets (Barberis, Greenwood, Jin and Shleifer, 2015; Hir-

shleifer, Li and Yu, 2015). One way to specify extrapolation is:

Ftxt+1 = xt + φ(xt − xt−1). (4.4)
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That is, expectations are influenced by the current outcome and the recent trend, and φ > 0

captures the degree of extrapolation.

Forward-Looking Models

We now proceed to “forward-looking" models, where forecasters do incorporate features

of the true process. Since these models contain rational expectations, the term structure of

expectations is more naturally defined.

3. Full information rational expectations

Full information rational expectations (FIRE) is the standard specification in economic

modeling. Decision makers know the true DGP and its parameters, and make statistically

optimal forecasts accordingly:

Ftxt+h = Etxt+h = ρhxt. (4.5)

As explained in Section 4.1, in our data in-sample least square learning is very close to FIRE,

so we use FIRE as the benchmark .

4. Noisy information/sticky expectations

Noisy information models assume that forecasters do not observe the true underlying

process, but only noisy signals of it (e.g., Woodford, 2003). In our experimental setup, where

recent realizations are shown in real time, such frictions may correspond to noisy perception.

These models typically have the following recursive definition:

Ftxt+h = (1− λ)ρhxt + λFt−1xt+h + εit,h, (4.6)

where Etxt+h is FIRE, and λ ∈ [0, 1] depends on the noisiness of the signal. εit,h also comes

from the noise in the signal.

Alternatively, this formulation could also represent anchoring on past forecasts. This

formulation is used in Bouchaud et al. (2019) to model earnings forecasts of equity analysts.

5. Diagnostic expectations
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Diagnostic expectations are introduced by Bordalo, Gennaioli and Shleifer (2018) to cap-

ture overreaction in expectations driven by the representativeness heuristic (Kahneman and

Tversky, 1972). The specification is:

Ftxt+h = Etxt+h + θ(Etxt+h − Et−1xt+h). (4.7)

That is, the subjective expectation is the rational expectation plus the surprise (measured

as the change in rational expectations from the past period) weighted by θ, which indexes

the severity of the bias. Under diagnostic expectations, subjective beliefs adjust to the true

process and incorporate features of rational expectations (“kernel of truth"), but overreact to

the latest surprise by degree θ.

6. Constant gain learning

We also test a version of LS learning where weights decrease for observations further in

the past (Malmendier and Nagel, 2016). We use the specification:

Ftxt+h = Êm
t xt+h = âh,t + b̂h,txt, (4.8)

where âh,t, b̂h,t are obtained through a rolling regression with all data available until t. The

difference with the standard least square learning specification is that this regression uses

decreasing weights (i.e., older observations receive a lower weight) to reflect imperfect re-

tention of past information. Specifically, in period t, for all past observations s ≤ t, we use

exponentially decreasing weights: ws
t = 1

κ(t−s)
. These weights correspond to constant gain

learning in recursive least squares formulations (Malmendier and Nagel, 2016; Nagel and

Xu, 2019).

Other Models

The above list leaves out several types of models in the literature, including simple

bounded rationality models, natural expectations, and learning with nonlinear Bayesian

priors. The reason is we do not find evidence for these models in our data, by design or

by outcome, as we explain below.
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First, an intuitive model related to our key facts is described in Gabaix (2018). Specifi-

cally, the forecaster faces a range of possible processes with varying degrees of persistence.

To limit computational cost, the boundedly rational forecaster anchors the true persistence

to a default level of persistence ρd: ρs = mρi + (1 − m)ρd. In such a setting, forecasters

would tend to overreact to processes that are less persistent than average, and underreact to

processes that are more persistent than average. One limitation of this approach is this bias

alone cannot account for results across different forecast horizons. For instance, Figure A.7

presents the implied persistence for both short-term (t + 1) and long-term (t + 10) forecasts

in the same experiment. It shows that a given level of incorrect persistence cannot simulta-

neously square with both short-term and long-term forecasts made by the same forecasters.

Indeed, if incorrect ρ is the only bias, then overreaction would dissipate for long-term fore-

casts (e.g., forecast of xt+10), which is not the case in the data. We provide more discussion

about overreaction and forecast horizon in Section 6.2.

Second, several papers investigate belief formation with model misspecification. For

instance, in natural expectations (Fuster, Laibson and Mendel, 2010), the key observation

is that forecasters can have difficulty differentiating processes with hump-shaped dynam-

ics (such as AR(2) or ARMA(p,q)) from simpler AR(1) processes in finite samples.13 Other

models analyze subjective beliefs about regime shifts (Barberis, Shleifer and Vishny, 1998;

Bloomfield and Hales, 2002; Massey and Wu, 2005). As explained in Section 4.1, in Experi-

ment 3 among MIT EECS students, we explicitly describe the linear AR(1) process to half of

the participants. We do not find that the information of a linear AR(1) prior affects the re-

sults. Indeed, our findings highlight that systematic biases in expectations can be significant

even in linear stationary environments.

Relatedly, building on Rabin (2002), Rabin and Vayanos (2010) also formulates a model

based on beliefs about misspecified DGP. Proposition 6 in this paper states that the forecast

should have a negative loading on the most recent observation (xt−1), whereas the loading

is strongly positive in our data.

13Fuster, Laibson and Mendel (2010) formulate an “intuitive model" Ftxt+1 = xt + φ(xt − xt−1) + εt+1, when
the true DGP is an AR(2) xt+1 = αxt + βxt−1 + ηt+1, and φ = (α− β− 1)/2. We could test this model in our
data, where α ≥ 0, β = 0, φ < 0, and the intuitive model has the same functional form as the extrapolative
expectation in Equation (4.4) with negative φ.
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B. Estimating Models of Expectations

We now estimate the six models described above on one-period ahead expectations data (i.e.,

with h = 1). We pool data from all conditions of Experiment 1 (i.e., with ρ ∈ {0, .2, .4, .6, .8, 1}).

All models except FIRE (which has no parameter) and constant gain learning (whose param-

eter lies in the decreasing weights) can be simply estimated using constrained least squares.

We cluster standard errors at the individual level. The constant gain learning model is es-

timated by minimizing, over the decay parameter, the mean squared deviation between

model-generated and observed forecasts. We estimate standard errors for this model by

block-bootstrapping at the individual level.

Table A.5 reports the estimated parameters. Each model is described by an equation and

a parameter (in bold). The parameter estimate is reported in the third column, along with

standard errors in the fourth column. In the fifth column, we report the mean squared error

of each model, as a fraction of the sample variance of forecast. Since forecasts in the ρ = 1

condition are mechanically more variable than forecasts in the ρ = 0 condition, we compute

one such ratio per level of ρ, and then compute the average ratio across values of ρ.

Several patterns emerge from the model estimation. First, consistent with findings in

Section 4.1, rational expectations are strongly rejected, for at least two reasons. One is that

FIRE has the lowest explanatory power of forecast data. The other is that rational expecta-

tions are nested in all three forward-looking non-RE models, and the coefficient related to

deviations from rational expectations is always significant at 1%.

Second, most models point to strong signs of overreaction. The adaptive model features

overreaction through the fact that the loading on the past realization xt is very high (.83).

This corresponds to overreaction whenever ρ is less than .83. The backward-looking extrap-

olative model has a negative coefficient on the slope (xt − xt−1), but this again reflects that

most overreaction is built into the past realization effect xt, whose coefficient is estimated to

be .93. The diagnostic expectations model has a θ of .34, which indicates strong overreaction

(forecasts react 34% “too much" to the last innovation).14 The constant gain learning model

features a significant decay in the weight of past observations, a loss of 6% per period (i.e.,

14The θ estimate is slightly lower than the typical estimate in Bordalo et al. (2020c) using macro survey data
(which find θ of around 0.5) and in Bordalo, Gennaioli and Shleifer (2018) and Bordalo et al. (2019) using
analyst forecasts of credit spreads and long-term EPS growth (which find θ of around 1).
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it takes about 12 periods to divide the weight by 2), rejecting the equal weights in bench-

mark least square learning. Last, the sticky/noisy expectations model is the only one that

does not feature overreaction. The coefficient on previous forecasts (Ft−1x+1) is statistically

significant at .14∗∗∗, a magnitude consistent with earlier analyses on individual analyst EPS

forecasts (Bouchaud et al., 2019). This finding suggests that there is some anchoring on the

level of past forecasts, in addition to overreaction to the recent realization.

C. Do Models Match the Empirical Results?

We first ask how the estimated models fit our key fact that overreaction is stronger for more

transitory processes (our Figure II). We start with the evidence on the implied persistence,

which is most intuitive. In Figure III, we compute the persistence implied by forecasts based

on the five models estimated above. For each model m and for each observation in our data,

we compute the predicted forecast F̂m
t xt+1, using the parameters in Table A.5. We then group

observations per level of ρ ∈ {0, .2, .4, .6, .8, 1}. For each level, we regress the model-based

forecast F̂m
t xt+1 on xt to obtain the implied persistence according to the model.

In Figure III, the solid line represents the implied persistence based on actual forecasts

(same as Figure II, Panel B). The dots represent the forecast-implied persistence based on

the models. In all models, the implied persistence is an increasing function of ρ, and is

close to one for random walks as in rational expectations. However, the list of commonly-

used models performs quite poorly for transitory processes. Backward-looking expectations

models generate “too much” overreaction for transitory processes, while on the contrary,

most forward-looking models do not generate enough overreaction. By definition, diagnos-

tic and sticky expectations generate no overreaction for transitory processes (the forecast

implied persistence according to these models is equal to zero). The constant gain learn-

ing model does slightly better: by giving larger weights to recent observations, the model

generates some excess sensitivity to recent realizations. Nonetheless, the weights on past

observations, as fitted on forecasting data, do not seem to decrease fast enough.

To connect with results in field data and for completeness, we also report in Figure A.8

the error-revision coefficients based on the models. Again, the solid line represents experi-

mental data (same as Figure A.8, Panel A) and the dots represent predictions from estimated
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Figure III: Forecast-Implied Persistence: Data vs Models

For each model m, we compute the model-based forecast F̂m
t xt+1 for each observation in our data. We use

the model parameters reported in Table A.5. We then group observations per level of actual persistence ρ ∈
{0, .2, .4, .6, .8, 1}. For each level of ρ, we regress the model-based forecast F̂m

t xt+1 on lagged realization xt. The
dots report this regression coefficient, which is the forecast implied persistence according to model m for a
given level of ρ. The solid line corresponds to the forecast implied persistence in the data, also shown in Figure
II, Panel B.
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models. In this figure we omit the adaptive and extrapolative models, because they do not

impose an obvious structure on the two-period ahead forecasts Ftxt+2, which are needed

to compute revisions. The conclusions are similar to those in Figure III. For transitory pro-

cesses, diagnostic and sticky expectations tend to lead to error-revision coefficients that are

too high. Constant gain learning, on the contrary, generates a coefficient that is too nega-

tive.15 Overall, the core message remains that commonly-used expectations models have

trouble fitting the variation of expectation biases across settings with different levels of pro-

cess persistence.

15This is in fact a mechanical effect of the error-revision coefficient, which divides by the variance of forecast
revision. In the constant gain learning model, forecast revisions tend to be very small for low values of ρs (they
are close to zero), which blows up the absolute value of the error-revision coefficient. The implied persistence
measure in Figure III is immune to this problem.

24



5 Model

To understand the variation of overreaction observed in the data, we provide a simple model

that captures the disproportionate influence of recent observations on expectations. We

show that this model performs very well in matching the evidence described above; it also

generates additional predictions for how overreaction varies with the forecast horizon and

the experiment design that we analyze later in Section 6.

5.1 Setup

Environment. Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. There is an agent who

forecasts future realizations of an exogenous stochastic process {xt : t ≥ 0} at horizon h.

The process is AR(1) with mean µ and persistence ρ:16

xt = (1− ρ)µ + ρxt−1 + εt, εt ∼ N (0, σ2
ε ). (5.1)

The agent’s payoff at any given time t depends on the accuracy of these forecasts and is

given by: −(Ftxt+h − xt+h)
2, where Ftxt+h is the agent’s time t forecast of x’s realization h

periods ahead and xt+h is the ex post realization of the variable at t + h.17

Agent’s Problem. We assume that the agent is uncertain about the long-run mean of the

process (µ) and forms a belief about its value. Our key assumption here is that some infor-

mation can be utilized more easily and is more “on top of the mind.”18 Specifically, since

the most recent realization xt is the latest information the agent is exposed to, we assume

16The model can be extended to a general Gaussian ARMA processes and the qualitative conclusions of the
model are unchanged. See Appendix C for details.

17Note that xt+h is not fully known at time t and only realized h periods after the forecast is made. Nonethe-
less, at time t, the agent knows that the payoff is determined by the realization of the process at t + h. This is
similar to the score function in the experiment. A minor difference is that the score function in the experiment
does not have an exact quadratic form to ensure that payments in the experiment are always non-negative (as
discussed in Section 3.2). We use this standard quadratic form for simplicity of modeling, so we can derive
closed-form solutions.

18A large body of psychology research shows recent information has high availability in human reasoning.
For example, Kahana (2012) explains that recent observations form the context that cues information retrieval
and short-term storage models (Raaijmakers and Shiffrin (1980)) formalize the high availability of recent ob-
servations in the reasoning process. Studies also show that recent signals from the perceptual system auto-
matically enter “working memory," or a temporary short-term storage system that is essential for information
processing and decision making (Baddeley, 1992, 2003; Cowan, 1999).
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that it can be used costlessly and automatically to form the agent’s initial prior regarding

µ ∼ N
(
xt, τ−1).19 The agent then decides whether to process more information to update

this prior, but at a cost that is increasing in the amount of information processed. We use St

to denote the set that contains xt and all the other data actively utilized by the agent, and

refer to this set as what is “on top of the mind.” Importantly, this set can be different from

the full set of information observed by the agent: naturally, although a person may see a

large number of observations in her environment, not all of that information is necessarily

processed.

Our model nests the frictionless rational benchmark: in the case where it is costless to

process additional information, the agent uses all available data to produce the FIRE fore-

cast. If information processing is costly, however, the set of information actively utilized

is a subset of all available information. We assume that the cost of information, Ct(St), is

increasing and convex in the amount of information processed by the agent:

Ct(St) ≡ ω
exp (γ · I(St, µ|xt))− 1

γ
, (5.2)

where ω ≥ 0 and γ ≥ 0 are the scale and convexity parameters, and I(St, µ|xt) is the Shan-

non’s mutual information function which measures the amount of information utilized by

the agent after observing xt. This functional form embeds two useful cases. First, it becomes

linear in I(St, µ|xt) when γ → 0, which is the classic formulation in rational inattention

(Sims, 2003). Second, in case of Gaussian beliefs with γ > 1, the cost is equivalent to choos-

ing the precision of beliefs about µ.20

For simplicity, we assume that the agent uses the correct ρ. As we discuss in Section

4.2 and 6, modeling frictions in beliefs about the long-run mean µ is the most parsimonious

way to capture how overreaction varies with the process persistence and forecast horizon,

whereas biases in ρ by itself is not sufficient (e.g., if the agent only uses an incorrect ρ, then

overreaction dissipates for long horizon forecasts).

19This can be obtained by assuming that the agent’s prior before observing xt is an improper uniform distri-
bution.

20For formal derivations, see the proof of Lemma ??.
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Formally, given the primitives of the problem at time t, the agent solves:

min
St

E

[
min
Ftxt+h

E
[
(Ftxt+h − xt+h)

2|St

]
+ Ct(St)

]
s.t. {xt}︸︷︷︸

observation

⊆ St︸︷︷︸
utilized information

⊆ St(xt).︸ ︷︷ ︸
largest feasible information set

(5.3)

where St(xt) is the largest possible set of information that is available for processing given

the set of available observations xt ≡ {xτ}τ≤t.21 In Appendix XXXX, we show that the above

problem can be simplified to choosing the optimal precision of the long-run mean estimate:

min
τ s.t.τ≤τ≤τ̄t≡var(µ|xt)−1.

 (1− ρh)2

τ
+ ω

(
τ
τ

)γ
− 1

γ

 (5.4)

(5.5)

5.2 Model Solution

5.5. shows.... with the optimal posterior precision of the long-run mean, τ∗ = var(µ|St)−1,

given by

τ∗ = τ max

1,

(
(1− ρh)2

ωτ

) 1
1+γ

 . (5.6)

The agent’s optimal forecast for xt+h at time t, conditional on the true µ (normalized to

zero) and realization of xt, is distributed normally according to:

Ftxt+h|(µ, xt) ∼ N
((

ρh + (1− ρh)
τ

τ∗

)
xt,

(1− ρh)2

τ∗

(
1− τ

τ∗

))
(5.7)

In the model, the assessment of the long-run mean is more important for forecasting

long-term outcomes (h ↑) as well as processes with lower persistence (ρ ↓). The following

21Formally, St(xt) ≡ {s|I(s, µ|xt) = 0}, meaning that no available signal should contain further information
about the long-run than what is revealed by the history of available observations.
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proposition presents the solution to the problem, which specifies the distribution of optimal

forecasts.

Proposition 1. Suppose that the set of available data points is large enough that var(µ|xt)

is arbitrarily close to zero. Forecasts display systematic overreaction relative to the rational

benchmark, with

Ftxt+h = Etxt+h︸ ︷︷ ︸
rational forecast

+ (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
xt︸ ︷︷ ︸

overreaction

+ εt︸︷︷︸
noise

. (5.8)

Proof. See Appendix B.3.

5.3 Comparative Statics

We now explore the implications of our model for explaining the empirical evidence. As

stated in Proposition 1, a key prediction of our model is that forecasts exhibit overreaction

to the most recent observation. The reason is that the agent relies on the latest observation

to predict the long-run mean of the process.22 Furthermore, our theory has additional impli-

cations about how the degree of overreaction varies across different settings: overreaction

is stronger for less persistent processes. The reason is that for less persistent processes, the

predictability of the long-run mean based on the most recent observation is lower and the

agent needs to rely more on costly utilization of past information rather the most recent

observation. The following proposition provides comparative statistics with respect to the

parameters of the model.

Proposition 2. Consider the regression estimating the implied persistence ρs
h from the fore-

casts:

Ftxt+h = c + ρs
hxt + ut, (5.9)

22This is a fundamental difference between our model and models of sticky information (which may use
similar modeling techniques). In sticky information models, agents have full access to past information, but
some may not have access to the most recent observation. Accordingly, forecasts can exhibit underreaction
(since they rely more on past information rather on the recent observation). In contrast, in our model, agents
are fully aware of the most recent observation and they have to decide the extent to process past data, which
results in overreaction (since forecasts rely more on the recent observation than on past information).
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and let ∆ ≡ ρs
h− ρh denote the difference between asymptotic estimator of ρs

h in the data and

the actual ρh of the process. Then,

1. ∆ ≥ 0 with ∆ = 0 if and only if, either ρ = 1, or information processing is frictionless

(ω = 0) and past information available to the forecaster is infinite.

2. ∆ is increasing in τ and ω.

3. ∆ is decreasing in ρh if the cost function is weakly convex in τ, which is true if and only

if γ ≥ 1.

Proof. See Appendix B.4.

Furthermore, connecting this result to the measure of overreaction in Equation (2.2)

yields the following corollary.

Corollary 1. Consider the relative measure ζ ≡ ρs
h/ρh. Then, ζ ≥ 1. Moreover, ζ is decreasing in

ρh, for all values of ρ and h, if and only if γ ≥ 1.

Proof. See Appendix B.5.

In sum, Proposition 2, along with Corollary 1, delivers two main results of our model.

The first result is overreaction, a prediction that is consistent with the evidence presented

in Section 4: the gap between implied and actual persistence, ∆, is positive (or equivalently,

ζ, the relative measure of this gap, is greater than 1). The second result is that if the cost of

utilization is convex in the precision of the agent’s forecast, the degree of overreaction, as

measured by ∆ or ζ, is larger for less persistent processes, as we observe in the data.

Moreover, the model provides two further testable predictions, which we discuss in more

detail in Section 6. First, since what determines ∆ or ζ is ρh, our results also imply that

overreaction should be larger for longer-horizon forecasts (ρh is decreasing in h). Second,

ρh forms in a sense a sufficient statistic for overreaction: the implied persistence parameter

should be similar in settings that share similar values of ρh.23

23da Silveira, Sung and Woodford (2020) present another approach of modeling overreaction by assuming
costly memory. In that model, agents decide what they want to remember in the future before an observation is
revealed. In our model, the recent observation is the starting point and agents decide to utilize past information
after an observation has been realized. In other words, while our model and the model in da Silveira, Sung
and Woodford (2020) both deliver overreaction in posterior beliefs, the prior beliefs are anchored to different
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Finally, the baseline version of the model focuses on overreaction in light of our empirical

evidence presented in Section 4. We provide an extension in Internet Appendix Section D

that shows how the model can allow for underreaction as well. In particular, if the signals

are noisy (Woodford, 2003) or if updating is infrequent (Mankiw and Reis, 2002), then there

can be an additional force that push in the direction of underreaction. In this case, the model

shows that overreaction will still be relatively more pronounced when the process is less

persistent. In our experiment, the signal is simple and clear and infrequent updating is

unlikely, so overreaction dominates.

5.4 Model Fit

We now present results on model fit for the case where the cost of information utilization is

quadratic (γ = 2). We set γ = 2 in order to minimize the degrees of freedom in the model.

We also present an alternative calibration in Section 6.3 where we jointly estimate γ with the

other parameters of the model. We study the implied persistence in the data as well as the

value predicted by our model when fitted to the realizations of xt in the data. As before,

the model is estimated by minimizing the mean-squared error (MSE) between the 1-period

forecast predicted by the model for a given parameter (using the realizations of xt in the

data) and the 1-period forecast observed in the data.

Figure IV shows the results for the baseline horizon h = 1: the solid line represents the

implied persistence ρs
1 in the data, and the red solid circles represent ρs

1 predicted by our

model. We see that the implied persistence ρs
1 predicted by our model is very similar to that

in the data. The fit is much better compared to what we obtained in Figure III for the models

in Section 4.2. Table A.6 further evaluates the model fit by calculating the MSE between ρs
h

in by the model and ρs
h in the data, as well as the MSE between Ftxt+h in the model and

Ftxt+h in the data. We calculate the MSE for our model and the models in Section 4.2. This

MSE calculation also confirms what is obvious visually and shows that our model has better

performance than models discussed in Section 4.2.

Finally, we discuss the intuition behind the better performance of our model. The mod-

values: in our model, the priors are anchored to the present, namely the most recent observation; in da Silveira,
Sung and Woodford (2020), in contrast, the priors are anchored to the past, which is given by the noisy memory
state.
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Figure IV: Model Fit: Implied Persistence

This figure shows the forecast implied persistence ρs
1 as a function of the objective persistence ρ. The implied

persistence ρs
1 is obtained by regressing Ftxt+1 on xt. The blue line represents the results in the forecast data.

The solid red dot represents ρs
1 from our model.
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els in Section 4.2 can be categorized into two groups. For the first group, namely, adaptive

expectations and traditional extrapolation, the models place a fixed weight on past obser-

vations that do not vary with the actual persistence ρ. Consequently, with a given param-

eter, these models generate implied persistence that adapts too little to the situation (the

curve is too flat). For the second group, namely, diagnostic expectations and noisy infor-

mation/sticky expectations, the models rely on rational expectations of the future forecasts.

In particular, they converge to rational expectations when the true persistence is zero. The

dependence on rational expectations and the adaptation turn out to be too strong in low

persistence conditions (the implied persistence curve is too steep). In our framework, due to

imperfect utilization of past information, the forecaster conflates part of the transitory shock

with changes in the long-run mean of the process. The agent adapts, but only partially. This

partial adaptation is what makes our model fit the data better than the alternatives when

ρ = 0: it overreacts less than backward-looking models, but more than the other non-RE

forward-looking models.
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6 Additional Tests

This section presents additional empirical results and discussions of the model. In Section

6.1, we present additional experiments that directly change what is on top of the mind. In

Section 6.2, we present non-targeted results from our model about how overreaction varies

with the forecast horizon. In Section 6.3, we show the robustness of our model formulations

to different functional forms. We also discuss the relevance and significance of several mod-

eling assumptions. Finally, in Section 6.4, we provide supportive evidence from financial

markets.

6.1 Changing What’s on Top of the Mind

The key underlying assumption of our model is that the recent observation is more on top

of the mind and more easily available. As a result, forecasters rely too much on it in their

judgment of the long-run mean, which leads to overreaction. In the following, we investi-

gate additional experiments to test this mechanism directly, by changing the extent to which

the last observation is on top of the mind.

We design two conditions in which participants are led to rely less on the most recent

observation. In the first condition (“red line”), we draw a red line at zero (the actual long-

term mean of the process) on the graphical interface for forecasting. A screenshot of the

interface is presented in Panel A of Figure A.9. In the second condition (“click on xt−10”),

we require participants to click on xt−10 before making their forecasts in each round. A

screenshot of the interface is presented in Panel B of Figure A.9. Both conditions contain

ρ ∈ {0, .2, .4, .6, .8, 1} and we also include the baseline treatment condition for comparison.

Each participant is randomly assigned to a given ρ and a given treatment condition. The

data is collected in Experiment 4.

The two additional treatment conditions seek to divert the focus away from the most

recent observation, which can reduce its impact on the assessment of the long-run mean.

Formally, both treatments can be modeled as giving an additional noisy signal regarding

the long-run mean, in addition to the existing default belief µ ∼ N(xt, τ−1). We obtain the

following prediction:
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Table I: Attenuating the Influence of the Last Realization

In this Table, we regress different definitions of the forecast error (realization minus forecast) on the last re-
alization, interacted with two indicator variables that equal one when the participant is allocated to the new
treatment conditions. One of these conditions features a red line at x = 0. The other one requires participants
to click on the point corresponding to xt−10 in each round before entering new forecasts. Regressions include
participant fixed effects to control for average optimism. ∗∗∗ indicates a 1% level of significance. Standard
errors clustered by participant are presented in parentheses.

xt+1 − Ftxt+1 ρxt − Ftxt+1 xt+2 − Ftxt+2 ρ2xt − Ftxt+2

xit -.22*** -.15*** -.33*** -.21***
(.029) (.03) (.031) (.034)

× Red Line at 0 .14*** .12** .22*** .21***
(.046) (.047) (.059) (.06)

× Click on xt−10 .15** .15*** .093 .11*
(.058) (.055) (.067) (.059)

Observations 21,645 21,645 21,090 21,645
R2 0.22 0.29 0.24 0.32
Participant FE Y Y Y Y

Proposition 3. The implied persistence in the new treatment conditions should be less than

that in the baseline condition: ρs
I < ρs for each level of actual ρ (except for ρ = 1).

Proof. See Appendix E.

Intuitively, the provision of the extra signal attenuates the reliance on xt in forming an

assessment about the long-run mean, thereby reducing overreaction. We test Proposition

3 by running the following regression pooling together the three treatment conditions (the

baseline condition and the two additional treatment conditions):

xit+1 − Ftxit+1 = αxit + βTRed Line
i × xit + γTClick xt−10

i × xit + ai + εit, (6.1)

where TRed Line
i and TClick t-10

i are indicator variables that are equal to one if individual i is

assigned to one of the new treatment conditions, and εit is clustered within individual. Since

there is strong overreaction in the experiment, we expect α < 0. But we expect overreaction

to be less pronounced in both conditions where the last observation is less on top of the

mind, so that β > 0 and γ > 0.

Table I shows the results of estimating Equation (6.1). We use forecast errors based on

both realizations and full-information rational forecasts. We also look at forecasts for xt+1

as well as xt+2. We find that both treatments significantly reduce overreaction, in line with

33



Proposition 3.

6.2 Implications for Forecast Horizon

Our experiment and our model also have important implications for how overreaction varies

with the forecast horizon. Recent research using survey data suggests that overreaction is

more pronounced for forecasts of longer horizon outcomes. For instance, using the error-

revision regression, Bordalo et al. (2019) find a negative and significant coefficient for eq-

uity analysts’ forecasts of long-term earnings growth, which points to overreaction, while

Bouchaud et al. (2019) document a positive error-revision coefficient for analysts’ forecasts of

short-term earnings. Wang (2019) and d’Arienzo (2020) use professional forecasters’ predic-

tions of interest rates, and show that the error-revision coefficient is negative and significant

for long-term interest rates, but not for short-term interest rates.24 As noted in Proposition 2

and Corollary 1, our model predicts that the degree of overreaction increases with 1− ρh, so

it naturally delivers more overreaction for longer-horizon forecasts.

We now present the empirical results in our forecast data and then examine the model fit.

In addition to the one-period ahead forecast (Ftxt+1) that we focus on in Section 4, we have

data on forecasts of xt+2, xt+5, and xt+10 from Experiments 2 and 4. We study the implied

persistence associated with these long-term forecasts by regressing Ftxt+h on xt and denote

the regression coefficient by ρs
h. In Figure V, we present (ρs

h)
1/h for different values of ρ.

Panels A, B, and C report results for h = 2, h = 5 (for which we only have conditions with

ρ between 0.2 and 0.8), and h = 10, respectively. In all panels, we see that overreaction is

very pronounced in the data (blue line), and the value (ρs
h)

1/h is even higher relative to the

45-degree line when h is larger.

We also compare the data with the value derived from the models, including our model

and the forward-looking models discussed in Section 4.2 (which have predictions for the

term structure of forecasts) as well as our model.25 In particular, we fit all models using

h = 1 (i.e., the model parameters are the same as those in Figure IV), so their performance

24Earlier work by Giglio and Kelly (2018) using asset prices also points to “excess volatility" of long-term
outcomes relative to short-term outcomes. Brooks, Katz and Lustig (2018) documents the same fact on the
term structure of interest rates.

25Backward-looking models do not provide a clear term structure of forecasts for multiple horizons.
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Figure V: Model Fit for Longer Horizon Forecasts

This figure shows the implied persistence ρs as a function of the objective persistence ρ. The subjective persis-
tence ρs is obtained by regressing Ftxt+h on xt and taking the 1/hth power of the coefficient. Panels A, B, and
C show results for h = 2, h = 5, h = 10, respectively. The data for Panels A and B come from Experiment 2 and
the data for Panel C come from Experiment 4. The solid lines represent the value in the data. The solid red dot
represents the value according to by our model. The dotted line is the 45-degree line.
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Panel C. h=10
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for h = 2, 5, 10 are not targeted. We see that the implied persistence according to standard

models is too low: they do not produce sufficient overreaction for long horizon forecasts.

Our model, on the other hand, performs quite well. Table A.6 shows that our model also

achieves the best fit in terms of MSE with respect to the forecasts in the data.

Overall, the data shows that overreaction is stronger for longer horizon forecasts. The

commonly used models again do not seem to match the degree of overreaction for long

horizon forecasts. With its focus on inference about the long-run mean, our model fits the

term structure of biases in expectations quite closely.
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6.3 Robustness of Model Formulations

We discuss several main assumptions in our baseline model in Section 5.

A. Convexity and General Functional Form

Our benchmark calibration assumes that the cost of information utilization is quadratic

(γ = 2) in the relative precision τ
τ . Here, we examine two alternative ways for calibrating

γ and show the robustness of the results. First, we fit our model assuming the cost is linear

in the mutual information (γ 7→ 0), which is a standard approach in the rational inattention

literature (e.g. Sims, 2003). Second, we fully optimize over the convexity parameter γ using

a grid-search method. Figure A.10 shows the results. The linear approach does a reasonable

job fitting the implied persistence, but overshoots slightly for processes with higher persis-

tence and undershoots slightly for processes with lower persistence. The general γ approach

produces very good fit (with the optimal value of γ roughly equal to 10). Overall, we find

that the model has good performance and is not very sensitive to the exact value used for γ.

B. Assumptions on τ

Our main model defines τ as the baseline precision the agent has regarding the long-run

mean after seeing the most recent observation. For simplicity, we have assumed that τ is

fixed across all experiments and across different persistence levels ρ. In the following, we

also consider an alternative approach, where we endogenize τ. One natural candidate for τ

is the inverse of the variance of the stationary distribution for the AR(1) process:

τalt =
1− ρ2

σ2
ε

. (6.2)

This choice can have a Bayesian interpretation as the posterior variance given xt, for a

Bayesian with an improper uniform prior (or a sequence of priors that become increasingly

dispersed). In particular, τalt is decreasing in ρ: the agent is ex ante more uncertain about

the long-run mean when the process in unconditionally more volatile. Figure A.11 shows

the fit of the alternative specification, and confirms that the model performs well in this case

too.

C. Assumptions about ρ

In the model, we assume that the forecaster uses the correct ρ but may have biased es-
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timates of the long-run mean µ. We make this modeling choice because biases about the

long-run mean can parsimoniously account for how overreaction varies with both process

persistence and forecast horizons. Biases about ρ alone (Gabaix, 2018; Angeletos, Huo and

Sastry, 2020) are not be sufficient. For instance, as we show in Figure A.7, a given level

of incorrect ρ cannot simultaneously account for the degree of overreaction in short-term

and long-term forecasts. In comparison, our model focuses on inference about the long-run

mean and it performs well for explaining the finding that overreaction tends to be stronger

for long-term forecasts.26 Overall, we do not rule out that forecasters may also use incorrect

ρ. Nonetheless, we find that modeling biases about the mean µ is the most concise way to

capture the finding that overreaction is stronger both when the process is less persistent and

when the forecast horizon is longer.

D. Incentives

A possible question is whether one can test the effect of changing forecasters’ incentives,

or the trade-off between the cost of information processing and the benefit of obtaining ac-

curate beliefs. While in principle one could design experiments with different incentive

schemes, we have refrained from doing so for several reasons. First, to obtain results that

are statistically or economically significant, the magnitude of incentives may need to be sub-

stantially different across treatment arms, which can raise issues of fairness. For example,

if an experiment randomly assigns participants to some conditions that pay ten or twenty

times as much as other conditions, this design may be questionable to human subject re-

views and may antagonize potential participants when they read disclosures of payments

in the consent form. Second, DellaVigna and Pope (2017) also suggest that participants are

often not only motivated by monetary incentives.

Another possible question is whether incentives for accuracy in practice could be so large

that decision makers will overcome all costs of information utilization. A large literature

document biases in high-stake settings (Malmendier and Tate, 2005; Pope and Schweitzer,

2011; Ben-David, Graham and Harvey, 2013; Greenwood and Hanson, 2015; Bordalo, Gen-

naioli, La Porta and Shleifer, 2019), which indicate that frictions may not be fully eradicated

26For example, consider regressing the forecast error on the current realization. If the bias takes the form of
using µ̃ instead of the true mean, then the coefficient of regressing forecast error of horizon h on the current
realization xt is (1− ρh)βµ̃|xt

(where βµ̃|xt
is the regression coefficient of µ̃ on xt), which increases with h.
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in these situations. Furthermore, many decisions are made under time constraints or with a

fair bit of human discretion, in which case the frictions represented by our model—namely,

certain information is particularly on top of the mind—are likely to be present. In the next

section, we also present supportive evidence from the stock market that points to variations

of overreaction that are in line with our main results.

6.4 Results from Financial Markets

This section explores the implication of our results for financial markets. A key finding we

highlight is that overreaction is stronger for more transitory processes. We test this observa-

tion in the stock market, where a series of papers has documented the link between investor

overreaction and the value premium, namely stocks with high book-to-market ratio have

high subsequent returns (e.g. Lakonishok, Shleifer and Vishny (1994), La Porta (1996), Bor-

dalo et al. (2019)). The intuition is that high book-to-market stocks are “cheap" on average

because investors overreacted to bad news in the past. Therefore, these stocks are underval-

ued and their future returns will be higher than average. If overreaction is more pronounced

for firms with transitory shocks, we would expect this predictability to be stronger for firms

with transitory sales processes.

We test this hypothesis using Fama-MacBeth regressions of the following form:

rit+1 = α + βBMit + γρi + δBMit × ρi + εit, (6.3)

where rit+1 is the annual stock return during fiscal year t+ 1, and BMit is the book-to-market

ratio of equity in the last day of fiscal year t. ρi is persistence of annual sales growth for firm

i (i.e., regression coefficient of ∆ log salesit+1 on lagged ∆ log salesit). The mean (median) of

ρi is .16 (.15) and the inter-quartile range is [−.07;+.39]. Since we run regressions firm by

firm to calculate ρi, this estimate may be downward biased if the time series is too short.

The median number of observations per firm is 18. We also present robustness checks where

we restrict our regressions to firms that have at least 10 observations and the results are

essentially unchanged. Overall, we expect that the coefficient of the interaction term δ < 0:

firms with less persistent sales processes should have stronger overreaction and therefore a
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Table II: Sales Persistence and the Value Premium

This table shows results of the following Fama-MacBeth regressions for firm i at fiscal year t:

rit+1 = α + βBMit + γρi + δBMit × ρi + εit,

where rit+1 is the annual stock return during fiscal year t + 1, and BMit is the book-to-market ratio of equity
in the last day of fiscal year t. ρi (“persistence” in the table) is the autoregression coefficient of annual sales
growth for firm i. The sample period 1980 to 2019. Each regression contains the persistence measure as a
control (ρi in columns (1), (2), (3), (4), and (6); quintiles of ρi in column (5)). Column (1) shows the regression
with the book-to-market ratio only. Columns (2) includes the interaction with the sales growth persistence ρi.
Columns (3) to (5) perform robustness checks using various subsamples, including firms below and above the
median market capitalization and firms where we have at least 10 observations to estimate ρi. Column (6)
shows the monotonicity by splitting ρi into quintiles (with breakpoints defined every year). ∗∗∗ stands for 1%
significance, and standard errors are reported in parentheses.

Baseline All Small Large N > 10 Quintiles
(1) (2) (3) (4) (5) (6)

Book-to-Market (BM) .16*** .18*** .21*** .14*** .17*** .24***
(.032) (.033) (.032) (.038) (.031) (.057)

BM × Persistence -.15*** -.15*** -.13*** -.19***
(.025) (.031) (.026) (.03)

BM × Persistence Quintile 1 .0019
(.048)

BM × Persistence Quintile 2 -.054
(.048)

BM × Persistence Quintile 3 -.069
(.05)

BM × Persistence Quintile 4 -.1*
(.055)

BM × Persistence Quintile 5 -.18***
(.057)

Observations 176,245 171,899 79,153 92,721 144,747 176,245
R2 0.02 0.02 0.03 0.03 0.02 0.03

more pronounced value premium.

We report Fama-McBeth regression results of Equation (6.3) in Table II. Our dataset is

a merged sample of CRSP and Compustat between 1980 and 2019, and we restrict to ob-

servations for which data on sales, book equity, market capitalization, and stock returns are

available. Column (1) reproduces the classic result that companies with high book-to-market

ratios have higher future stock returns (the value premium). Column (2) is our main test of

Equation (6.3), namely the return predictability is stronger for firms that have less persistent

sales growth. The coefficient δ on the interaction term is indeed negative and significant.

This finding is in line with our prediction: if the value premium is related to overreaction,

such overreaction is more pronounced when firms’ cash flows are more transitory. Columns
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(3) to (5) present robustness checks using various subsamples, including firms with market

capitalization below and above the median and firms where we have at least 10 observations

to estimate ρi. In all of these regressions, the t-statistic of the interaction term δ is very high,

hovering between 5 and 6. Column (6) breaks down ρi into quintile dummies and shows

that the effect of persistence is monotonic.

7 Conclusion

Recent research using survey data from different sources points to varying degrees of biases

in expectations. A key question is how to unify the different sets of findings. To have a better

understanding of how biases vary with the setting, we conduct a large-scale randomized

experiment where participants forecast stable random processes. The experiment allows us

to control the DGP and the relevant information sets. This is not feasible in survey data,

which can give rise to major complications in interpreting results in survey data.

We find that forecasts display significant overreaction: they respond too much to re-

cent observations. Overreaction is particularly pronounced for less persistent processes and

longer forecast horizons. We also find that commonly-used models, estimated in our data,

do not easily account for the variation in overreaction. Some predict too much overreaction

when the process is transitory (e.g., adaptive expectations and simple extrapolation), while

others predict too little (e.g., diagnostic expectations and constant gain learning).

We propose a framework for understanding biases in expectations formation, where fore-

casters form estimates of the long-run mean of the process using a mix of the recent observa-

tion and past data. They balance these two sources of information depending on the setting,

but the utilization of past information can be costly and imperfect. As a result, forecasts

adapt partially to the setting, but recent observations can have a disproportionate influence,

resulting in overreaction. Over-adjusting the estimates of the long-run mean in response to

recent observations also naturally implies that overreaction is more pronounced when the

process is more transitory and the forecast horizon is longer. We estimate the model in our

data and find that it closely matches how overreaction varies with process persistence. The

model, when estimated on short-term forecasts, also predicts long-term forecasts that closely

match what we observe in the data.
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Finally, our baseline model focuses on overreaction given the empirical evidence in our

experiment. Nonetheless, the model can also be extended to allow for underreaction by in-

troducing noisy signals, which could be a reason for underreaction observed in some survey

data (Coibion and Gorodnichenko, 2012; Bouchaud et al., 2019). In this setting, the model

maintains the prediction that the degree of overreaction should be relatively stronger when

the process is less persistent. Taken together, we hope that the evidence and theory in this

paper contributes to the unification of findings on expectation biases.
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Figure A.1: Estimation Error: Error-Revision Coefficient and Implied Persistence Coefficient

This figure shows simulation results on the error-revision coefficient and the implied persistence coefficient.
We start by simulating 10 datasets of 45 participants each, where each participant makes 40 forecasts of an
AR(1) process. Each of the 10 dataset has one level of the AR(1) persistence ρ, which goes from 0 to 1. In
each dataset, participants make forecasts using the diagnostic expectations model: Ftxt+h = ρhxt + 0.4ρhεt,
where xt is the process realization and εt is the innovation. In Panel A, for each level of ρ, we estimate the
error-revision coefficient b from the following regression: xt+1 − Ftxt+1 = c + b(Ftxt+1 − Ft−1xt+1) + ut+1. The
dark solid line shows the theoretical prediction (Bordalo et al., 2020c). The light solid line shows the average
coefficient from 200 simulations. The dashed lines show the 90% confidence bands from the simulations. In
Panel B, we implement the same procedure and report the implied persistence coefficient ρ̂ estimated from the
regression: Ftxt+1 = cst + ρ̂xt + vt+1. The dark solid line shows the theoretical prediction based on diagnostic
expectations. The light solid line shows the average coefficient from 200 simulations. The dashed lines show
the 90% confidence bands from the simulations. The standard errors are very tight so the three lines lie on top
of one another.
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Figure A.2: Prediction Screen

This figure shows a screenshot of the prediction task. The green dots indicate past realizations of the statistical
process. In each round t, participants are asked to make predictions about two future realizations Ftxt+1 and
Ftxt+2. They can drag the mouse to indicate Ftxt+1 in the purple bar and indicate Ftxt+2 in the red bar. Their
predictions are shown as yellow dots. The grey dot is the prediction of xt+1 from the previous round (Ft−1xt+1);
participants can see it but cannot change it. After they have made their predictions, participants click “Make
Predictions" and move on to the next round. The total score is displayed on the top left corner, and the score
associated with each of the past prediction (if the actual is realized) is displayed at the bottom.

Figure A.3: Implied Persistence and Actual Persistence

We compute the implied persistence ρs
1 from Fitxt+1 = c + ρs

1xt + uit for each level of AR(1) persistence ρ. The
y-axis plots the implied persistence relative to the actual persistence ζ = ρs

1/ρ, i.e., the measure of overreaction,
and the x-axis plots the AR(1) persistence ρ. The line at one is the FIRE benchmark.
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Figure A.4: Distance between Subjective Forecasts and Rational Expectations

The top left panel shows the root mean squared difference between in-sample least square expectations and
full information rational expectations (FIRE). The top right panel shows the root mean squared difference
between participants’ actual subjective forecasts and the least square forecasts. The data use all conditions in
Experiment 1. The bottom panel shows the implied persistence of least square forecasts for each level of ρ,
which is the regression coefficient of the least square forecast on xt.
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Figure A.5: Knowledge of Linear DGP and the Distribution of Forecasts

We use the data from Experiment 3 (MIT EECS), with 204 MIT undergraduates randomly assigned to AR(1)
processes with ρ = .2 or ρ = .6. 94 randomly selected participants were told that the process is a stable random
process (control group), while 110 were told that the process is an AR(1) with fixed µ and ρ (treatment group).
Panel A shows the distributions of the forecast error xt+1 − Ftxt+1 for both treated and control groups. Panel
B shows binscatter plots of the forecast error as a function of the latest realization xt.
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Figure A.6: Overreaction and Persistence of Process: Results by Demographics

This figure plots the error-revision coefficient and the implied persistence for each level of AR(1) persistence,
estimated in different demographic groups. In Panel A, the solid dots represent results for male participants
and the hollow dots represent results for female participants. In Panel B, the solid dots represent results for
participants younger than 35 and the hollow dots represent results for participants older than 35. In Panel C,
the solid dots represent results for participants with high school degrees, and the hollow dots represent results
for participants with college and above degrees.
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Figure A.7: Implied Persistence for Short-Term and Long-Term Forecasts

This figure shows the implied persistence for forecasts of xt+1 and xt+10 in Experiment 4. For each horizon h
and a given ρ, the x-axis is ρ and the y-axis shows ρs

h which is the regression coefficient of Ftxt+h on xt to the
(1/h) power (i.e., the implied persistence). The blue circles show ρs

1 and the red diamonds show ρs
10,
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Figure A.8: Error-Revision Coefficient: Data vs Models

For each level of ρ, we regress the model-based forecast error xt+1 − F̂m
t xt+1 on the model-based forecast

revision F̂m
t xt+1 − ̂Fm

t−1xt+1. The dots report the regression coefficient obtained for each model m and each
level of ρ. The solid line reports the error-revision coefficient in the experimental data, as in Figure II, Panel A.
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Figure A.9: Prediction Screen for Additional Experiments

This figure shows the screenshot of the prediction task for addittional treatment conditions in Experiment 4.
Panel A shows the condition where we include a red line at zero. Panel B shows the condition where we
require participants to click on xt−10 (the dot in blue) before making the prediction.

Panel A. Show Red Line at 0

Panel B. Click xt−10

56



Figure A.10: Model Functional Form: Robustness Checks

This figure shows the model fit under alternative model specifications of the cost function, for h = 1 in Panel
A and h = 5 in Panel B. The red dots represent the implied persistence from our model when γ = 1, and the
green diamonds represent result from our model when we do a full grid search for γ. The blue line represents
the value observed in the forecast data.
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Figure A.11: Model Functional Form: Robustness Checks

This figure shows the model fit under the alternative formulation of τ, as discussed in Section 6.3, for h = 1
in Panel A and h = 5 in Panel B. The red dots represent the implied persistence from our model, and the blue
line represents the value observed in the forecast data.
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Table A.2: Summary of Conditions

This table provides a summary of the experiments we conducted. Each panel describes one experiment, and
each line within a panel corresponds to one treatment condition. Columns (1) to (3) show the parameters of
the AR(1) process xt+1 = µ + ρxt + εt+1. Participants are only allowed to participate once.

(1) (2) (3) (4)
Condition Persistence ρ Mean µ Conditional Vol σε # of Participants

Panel A: Experiment 1 – Baseline, MTurk

A1 Baseline 0 0 20 32
A2 Baseline 0.2 0 20 32
A3 Baseline 0.4 0 20 36
A4 Baseline 0.6 0 20 39
A5 Baseline 0.8 0 20 28
A6 Baseline 1 0 20 40

Panel B: Experiment 2 – Long Horizon, MTurk

B1 Horizon: F1 + F5 0.2 0 20 41
B2 Horizon: F1 + F5 0.4 0 20 26
B3 Horizon: F1 + F5 0.6 0 20 31
B4 Horizon: F1 + F5 0.8 0 20 30

Panel C: Experiment 3 – DGP Information, MIT EECS

C1 Baseline 0.2 0 20 42
C2 Baseline 0.6 0 20 52
C3 Display DGP is AR(1) 0.2 0 20 70
C4 Display DGP is AR(1) 0.6 0 20 40

Panel D: Experiment 4 – Additional Test, MTurk

D11 Baseline 0 0 20 41
D12 Baseline 0.2 0 20 36
D13 Baseline 0.4 0 20 34
D14 Baseline 0.6 0 20 26
D15 Baseline 0.8 0 20 28
D16 Baseline 1 0 20 26
D21 Red Line at 0 0 0 20 34
D22 Red Line at 0 0.2 0 20 32
D23 Red Line at 0 0.4 0 20 24
D24 Red Line at 0 0.6 0 20 36
D25 Red Line at 0 0.8 0 20 39
D26 Red Line at 0 1 0 20 33
D31 Click xt−10 0 0 20 23
D32 Click xt−10 0.2 0 20 30
D33 Click xt−10 0.4 0 20 28
D34 Click xt−10 0.6 0 20 25
D35 Click xt−10 0.8 0 20 28
D36 Click xt−10 1 0 20 27
D41 Horizon: F1 + F10 0 0 20 27
D42 Horizon: F1 + F10 0.2 0 20 27
D43 Horizon: F1 + F10 0.4 0 20 30
D44 Horizon: F1 + F10 0.6 0 20 26
D45 Horizon: F1 + F10 0.8 0 20 36
D46 Horizon: F1 + F10 1 0 20 38
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Table A.3: Summary Statistics

Panel A describes demographics of participants. Panel B reports basic experimental statistics, including the
total score, the total bonus (incentive payments) paid in US dollars, the overall time taken to complete the
experiment, and the time taken to complete the forecasting part (the main part).

Panel A. Participant Demographics

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Obs. % Obs. % Obs. % Obs. %

Gender: Female 90 43.5 61 47.7 116 56.9 316 43.1
Gender: Male 117 56.5 67 52.3 88 43.1 418 56.9

Age: <= 25 30 14.5 18 14.1 197 96.6 62 8.4
Age: 25-45 138 66.7 89 69.5 7 3.4 500 68.1
Age: 45-65 35 16.9 20 15.6 0 0.0 156 21.3
Age: 65+ 4 1.9 1 0.8 0 0.0 16 2.2

Education: Grad School 20 9.7 18 14.1 0 0.0 170 23.2
Education: College 132 63.8 74 57.8 204 100.0 426 58.0
Education: High School 55 26.6 36 28.1 0 0.0 133 18.1
Education: Below/Other 0 0.0 0 0.0 0 0.0 5 0.7

Invest. Exper.: Extensive 7 3.4 3 2.3 2 1.0 77 10.5
Invest. Exper.: Some 58 28.0 29 22.7 21 10.3 258 35.1
Invest. Exper.: Limited 71 34.3 56 43.8 43 21.1 232 31.6
Invest. Exper.: None 71 34.3 40 31.3 138 67.6 167 22.8

Taken Stat Class: No 117 56.5 80 62.5 0 0.0 361 49.2
Taken Stat Class: Yes 90 43.5 48 37.5 204 100.0 373 50.8

Panel B. Experimental Statistics

Mean p25 p50 p75 SD N

Experiment 1

Total Forecast Score 2,004 1,690 1,990 2,335 461.93 207
Bonus ($) 3.34 2.82 3.32 3.89 0.77 207
Total Time (min) 18.01 10.92 13.11 21.85 11.34 207
Forecast Time (min) 6.80 4.54 5.66 7.79 3.53 207

Experiment 2

Total Forecast Score 1,843 1,588 1,820 2,138 463.38 128
Bonus ($) 3.07 2.65 3.04 3.56 0.77 128
Total Time (min) 15.82 8.74 13.11 19.66 9.80 128
Forecast Time (min) 6.70 4.54 6.02 7.58 3.17 128

Experiment 3

Total Forecast Score 2,071 1,755 2,046 2,326 429.59 204
Bonus ($) 8.63 7.31 8.53 9.69 1.79 204
Total Time (min) 18.45 6.55 10.92 13.11 37.67 204
Forecast Time (min) 8.78 4.03 5.09 7.46 19.72 204

Experiment 4

Total Forecast Score 1,767 1,422 1,812 2,174 610.23 734
Bonus ($) 2.95 2.37 3.02 3.62 1.02 734
Total Time (min) 15.75 8.74 13.11 19.66 10.00 734
Forecast Time (min) 7.88 4.79 6.50 9.22 4.97 734
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Table A.4: Effect of Knowing the Process

This table reports the implied persistence in Experiment 3 among MIT EECS students. Participants are ran-
domly assigned to ρ = 0.2 and ρ = 0.6. In addition, half of them are randomly assigned to the baseline control
condition (control) where the process is described as a stable random process, while the other half are assigned
to the treatment condition where they are told that the process is a fixed and stationary AR(1) process.

Baseline Condition Knows AR(1) Difference (p-value)

ρ = .2 0.56 0.65 0.14
ρ = .6 0.86 0.88 0.71
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Table A.6: Model Fit

This table shows the MSE between ρs
h in the model in columns (1), (3), and (5), and the MSE between Ftxt+h

implied by the model and Ftxt+h in the data in columns (2), (4), (6). Columns (1) and (2) report results for the
1-period forecast; columns (3) and (4) report results for the 2-period forecast; columns (5) and (6) report results
for the 5-period forecast. The adaptive expectations model is: Ftxt+1 = δxt + (1− δ)Ft−1xt. The traditional
extrapolative expectations model is: Ftxt+1 = xt + φ(xt − xt−1). The sticky expectations model is: Ftxt+h =
(1− λ)ρhxt + λFt−1xt+h + εit,h. The diagnostic expectations model is: Ftxt+h = Etxt+h + θ(Etxt+h − Et−1xt+h).
The constant gain learning model is: Ftxt+h = Êtxt+h = at,h + ∑k=n

k=0 bk,h,txt−k.

Forecast Horizon h = 1 h = 2 h = 5 h = 10
MSE Type ρs

h Forecast ρs
h Forecast ρs

h Forecast ρs
h Forecast

(1) (2) (3) (4) (5) (6) (7) (8)

Current Model 0.003 496.1 0.001 719.2 0.001 691.0 0.001 2176.4
Adaptive 0.035 495.7 . . . . . .
Extrapolative 0.064 527.3 . . . . . .
Sticky 0.117 556.2 0.140 786.1 0.197 814.6 0.310 2304.9
Diagnostic 0.069 521.2 0.115 758.0 0.177 803.3 0.302 2338.2
Constant Gain Learning 0.067 526.8 0.039 749.5 0.033 736.3 0.022 2454.9
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B Proofs

B.1 Standard Errors of Error-Revision Coefficient
Proposition B.1. Assume a univariate regression of centered variables:

yi = βxi + ui.

Then, the standard error of the OLS estimate of β is given by:

s.d.
(

β̂− β
)
≈ 1√

N

(
varyi
varxi

− β2
)1/2

.

Proof. The OLS estimator of β is given by:

β̂ =
1
N ∑i xiyi

1
N ∑i x2

i
= β +

1
N ∑i xiui

1
N ∑i x2

i
.

Hence,
√

N(β̂− β) =

√
N 1

N ∑i xiui
1
N ∑i x2

i
.

By virtue of the central limit theorem, we have:

√
N

1
N ∑

i
xiui → N(0, var(xiui)),

while
1
N ∑

i
x2

i → varxi.

This ensures that: √
N(β̂− β)→ N(0,

var(xiui))

(var(xi))2︸ ︷︷ ︸
=

varui
varxi

).

Note that the asymptotic variance can be rewritten as:

varui
varxi

=
varyi + β2varxi − 2βcov(xi, yi)

varxi

=
varyi
varxi

− β2.

Evidently, this ratio is bigger when the variance of xi is smaller.
For the error-revision coefficient, it can easily be shown that:

varyi
varxi

=

(
1 + ρ2θ2)

ρ2 ((1 + θ)2 + θ2ρ2)
→ +∞ as ρ→ 0

This makes it clear that the error-revision coefficient does not work well for small ρ because the right-hand-
side variable has a small variance, which makes it hard to estimate λ precisely.
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On the other hand, measuring overreaction using the implied persistence does not have this problem as
the variance of the right-hand-side variable is just the variance of the process itself, which is non-zero.

B.2 Lemma ??
Proof. The agent has two decisions. First, she decides what information to utilize (chooses St ⊆ St(xt). Sec-
ond, she chooses the optimal forecast Ftxt+h given the σ-algebra induced by St. We solve this backwards.
Specifically, we characterize the optimal forecast for any choice of St and then solve for the optimal St given
the optimal forecast that it implies.

It is straightforward to see that with a quadratic loss function the optimal forecast for a given choice of St is
simply the unbiased expectation of xt+h conditional on St. Formally, let F∗t xt+h(St) denote the optimal forecast
of the agent under St, then

F∗t xt+h(St) ≡ arg min
Ftxt+h

E[(Ftxt+h − xt+h)
2|St]⇒ F∗t xt+h(St) = E[xt+h|St]. (B.1)

It immediately follows that the loss from an imprecise forecast is the variance of xt+h conditional on St

E[(F∗t xt+h(St)− xt+h)
2|St] = var(xt+h|St). (B.2)

Moreover, we can decompose this variance in terms of uncertainty about the long-run mean and variance of
short-run fluctuations:

var(xt+h|St) = var((1− ρh)x̄ + ρhxt +
h

∑
j=1

ρh−jεt+j|St) (B.3)

= (1− ρh)2var(x̄|St) + σ2
ε

h

∑
j=1

ρ2(h−j), (B.4)

where the second line follows from:

1. orthogonality of future innovations to St that follows from feasibility (εt+j ⊥ S(xt), ∀j ≥ 1);

2. var(xt|St) = 0 since xt ∈ St by assumption.

It is important to note that the second term in Equation B.4 is independent of the choice for St. We can now
rewrite the agent’s problem as:

min
St

E[(1− ρh)2var(x̄|St) + C(St)|xt] (B.5)

s.t. {xt} ⊆ St ⊆ S(xt), (B.6)

where the expectation E[.|xt] is taken conditional on xt because the choice for what information to utilize
happens after the agent observes the context but before information is processed.

The next step in the proof is to show that under the optimal information utilization, the distribution of x̄|St

is Gaussian. To prove this, we show that for any arbitrary St ∈ S(xt), there exists another Ŝt ∈ S(xt) that
(1) induces a Gaussian posterior and (2) yields a lower value for the objective function than St. To see this, let
St ⊇ {xt} be in S(xt) and let Ŝt ⊇ {xt} be such that

var(x̄|Ŝt) = E[var(x̄|St)|xt].

Such a Ŝt exists because S(xt) is assumed to contain all possible signals on x̄t that are feasible, so if an expected
variance is attainable under an arbitrary signal, it is also attainable by a Gaussian signal. Since both signals
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imply the same expected variance, to prove our claim, we only need to show that C(Ŝt) ≤ C(St). To see this,
recall that C(St) is monotonically increasing in I(St, xt+h|xt). Thus,

C(Ŝt) ≤ C(St)⇔ I(Ŝt, xt+h|xt) ≤ I(St, xt+h|xt). (B.7)

A final observation yields our desired result: by definition of the mutual information function in terms of
entropy,27

I(St; x̄|xt) = h(x̄|xt)−E[h(x̄|St)|xt]. (B.8)

Similarly,

I(Ŝt; x̄|xt) = h(x̄|xt)−E[h(x̄|Ŝt)|xt]. (B.9)

It follows from these two observations that

C(Ŝt) ≤ C(St)⇔ E[h(x̄|Ŝt)|xt] ≥ E[h(x̄|St)|xt]. (B.10)

The right hand side of this condition is true by the maximum entropy of Gaussian random variables among
random variables with the same variance, with equality only if both St and Ŝt are Guassian (see for example
Cover Thomas and Thomas Joy (1991)).28 This result implies that C(Ŝt) ≤ C(St). Therefore, for any arbitrary
St ⊂ St(xt) such that x̄|St is non-Gaussian, we have shown that there exists Ŝt ⊂ St(xt) that is (1) feasible and
(2) strictly preferred to St and (3) x̄|Ŝt is Gaussian.

Hence, without loss of generality, we can assume that under the optimal retrieval of information, x̄|St is
normally distributed. Now, for a Gaussian {xt} ⊂ St ⊂ St(xt), since entropy of Gaussian random variables
are linear in the log of their variance, we have:

I(x̄; St|xt) = h(x̄|xt)− h(x̄|St) (B.11)

=
1
2

log2(var(x̄|xt))−
1
2

log2(var(xt|St)). (B.12)

For simplicity we define τ(St) ≡ var(x̄|St)−1 as the precision of belief about x̄ generated by St and τ ≡

27For random variables (X, Y), I(X; Y) = h(X)− EY[h(X|Y)] where for any random variable Z with PDF
fZ(z), h(Z) is the entropy of Z defined as the expectation of negative log of its PDF: h(Z) = −EZ[log2( fZ(Z))].

28For completeness, we briefly outline the proof for maximum entropy of Gaussian random variables. The
claim is: among all the random variables X variance σ2, X has the highest entropy if it is normally distributed.
The proof follows from optimizing over the PDF of the distribution of X:

max
{ f (x)≥0:x∈R}

−
∫

x∈R
f (x) log( f (x))dx (maximum entropy)

s.t.
∫

x∈R
x2 f (x)dx− (

∫
x∈R

x f (x)dx)2dx = σ2 (constraint on variance)∫
x∈R

f (x)dx = 1. (constraint on f being a PDF)
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var(x̄|xt)−1 as the precision of the prior belief of the agent about x̄. It follows that

I(x̄; St|xt) =
1

2 ln(2)
ln
(

τ(St)

τ

)
, (B.13)

C(St) = ω
exp(2 ln(2) · γ · I(x̄; St|xt))− 1

γ
(B.14)

= ω

(
τ(St)

τ

)γ
− 1

γ
. (B.15)

Hence, the agent’s problem can be rewritten as

min
St

E

 (1− ρh)2

τ(St)
+ ω

(
τ(St)

τ

)γ
− 1

γ

∣∣∣xt

 (B.16)

s.t. {xt} ⊆ St ⊆ S(xt). (B.17)

Finally, since the objective of the agent only depends on the precision induced by St, we can reduce the problem
to directly choosing this precision, where the constraint on St implies bounds on achievable precision: the
precision should be bounded below by τ (since the agent knows xt). Moreover, it has to be bounded above
by var(x̄|xt)−1 which the precision after utilizing all available information. Replacing these in the objective, and
changing the choice variable to τ(St) we arrive at the exposition delivered in the lemma.

B.3 Proposition 1
Proof. We start by solving the simplified problem in Lemma ??. The problem has two constraints for τ: τ ≥ τ

and τ ≤ τ̄(xt) ≡ var(µ|xt)−1. By assumption var(µ|xt) is arbitrarily small so we can assume that the second
constraint does not bind. The K-T conditions with respect to τ are

− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ

≥ 0, τ ≥ τ,

(
− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ
)
(τ − τ) = 0.

Therefore, the variance of the agent’s belief about the long-run mean is given by

var(µ|St) = τ−1 = τ−1 min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (B.18)

The next step is to find an optimal signal set St ⊇ {xt} that generates this posterior. Two cases arise:

1. if
(

ωτ
(1−ρh)2

)
≥ 1, then σ2 = (1− ρh)2τ and St = {xt} delivers us the agent’s posterior. In other words,

var(µ|St) = var(µ|xt) meaning that the agents does not retrieve any further information other than
what is implied by the context. In this case, E[µ|St] = E[µ|xt] = xt and

µt ≡ E[E[xt+h|St]|µ, xt] = (1− ρh)E[E[µ|St]|µ, xt] + ρhE[E[xt|St]|µ, xt] = xt (B.19)

and

σ2 ≡ var(E[xt+h|St]|µ, xt) = var(xt|µ, xt) = 0; (B.20)

2. if
(

ωτ
(1−ρh)2

)
< 1, then it means that the agent utilizes more information than what is revealed by the

context xt. Suppose a signal structure S̃t generates this posterior variance. By Lemma ?? this has to be
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Guassian. Our claim is that the set Ŝt ≡ {xt, E[µ|S̃t]} also generates this posterior. Note that elements
of this set are also distributed according to a Gaussian distribution. To see the equivalence of the two
sets, note that by the law of total variance,

var(µ|xt) = var(µ|S̃t) + var(E[µ|S̃t]|xt)

var(µ|xt) = var(µ|Ŝt) + var(E[µ|Ŝt]|xt),

but note that

var(E[µ|Ŝt]|xt) = var(E[µ|xt, E[µ|S̃t]]|xt) = var(E[µ|S̃t]|xt).

Thus, it has to be that

var(µ|S̃t) = var(µ|Ŝt)

and the two sets generate the same posterior variance for the agent. Now, note that by Bayesian updat-
ing of Gaussians:

E[µ|St] = E[µ|S̃t] = E[µ|xt] +
cov(µ, E[µ|S̃t]|xt)

var(E[µ|S̃t]|xt)
(E[µ|S̃t]−E[µ|xt]).

Since E[µ|S̃t]−E[µ|xt] 6= 0 almost surely, this implies that

cov(µ, E[µ|S̃t]|xt) = var(E[µ|S̃t]|xt) = τ−1 − τ−1, (B.21)

where the last equality follows from the law of total variance. Now, consider the following decomposi-
tion of E[µ|S̃t]:

E[µ|S̃t] = aµ + bxt + εt,

where a and b are constants and εt is the residual that is orthogonal to both xt and µ conditional on S̃t.
We have

xt = E[µ|xt] = E[E[µ|S̃t]|xt] = aE[µ|xt] + bxt = (a + b)xt,

so a + b = 1. Moreover, we also have

cov(µ, E[µ|S̃t]|xt) = avar(µ|xt),

so a = 1− τ
τ . Therefore,

E[E[µ|S̃t]|µ, xt] = (1− τ

τ
)µ +

τ

τ
xt

⇒µt ≡ E[E[xt+h|S̃t]|µ, xt] = (1− ρh)(1− τ

τ
)µ + (1− ρh)

τ

τ
xt + ρhxt. (B.22)

Moreover,

var(E[µ|S̃t]|xt) = a2var(µ|xt) + var(εt)

⇒var(εt) =
1
τ
(1− τ

τ
)

⇒σ2 ≡ var(E[xt+h|S̃t]|µ, xt) = (1− ρh)2var(εt) = (1− ρh)2 1
τ
(1− τ

τ
). (B.23)
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Plugging in the expression for τ from (B.18) into (B.22) and (B.23) and setting µ = 0 gives us the expres-
sions in the Proposition.

Combining Equations (B.19), (B.20), (B.18), (B.22), (B.23) and setting µ = 0 gives us:

µt = min

{
1, ρh + (1− ρh)

(
ωτ

(1− ρh)2

) 1
1+γ

}
xt (B.24)

σ2 = (1− ρh)2τ−1 max

{
0,
(

ωτ

(1− ρh)2

) 1
1+γ

(
1−

(
ωτ

(1− ρh)2

) 1
1+γ

)}
. (B.25)

B.4 Proposition 2
Proof. From Proposition 1 we can derive ∆ as

∆ = (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (B.26)

1. Note that if ∆ = 0 then either ρh = 1 or ω = 0, but recall that this expression for the precision of the
long-run mean was derived under the assumption that var(µ|xt) is arbitrarily small. So ∆ = 0 if and
only if either ρ = 1 or ω = 0 and past information potentially available to the forecaster is infinite.

2. As long as γ ≥ 0, which is true by assumption, it is straightforward to verify that ∆ is increasing in ω

and τ.

3. For ∆ to be decreasing in ρh it has to be the case that (1− ρh)1− 2
1+γ is decreasing in ρh, which is the case

if and only if

1− 2
1 + γ

≥ 0⇔ γ ≥ 1. (B.27)

B.5 Corollary 1
Proof. From Proposition 2 we have

ln(ζ) = ln

(
1 + (ρ−h − 1)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

})
. (B.28)

It is straightforward to see that the term inside the log on the right hand side is larger than 1, so the implied

persistence is larger than the actual persistence. Moreover, for ζ to be decreasing in ρh, (1− ρh)1− 2
1+γ /ρh needs

to be decreasing in ρh, which is true if and only if γ ≥ 2ρh − 1. Therefore, for ζ to be decreasing for any value
of ρh, we need γ ≥ 1.

C Generalized Model for Arbitrary ARMA Processes
We consider a Markov Gaussian process {Xt : t ≥ 0} on Rn with the following state space representation:

Xt = (I − A)X̄ + AXt−1 + Qut.
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Suppose the agent’s task is to make a set of forecasts of horizon hi for a vector of m variables Yt = (yi,t+hi
)i∈{1,...,m},

where yi,t+hi
= w′iXt+hi

is a linear combination of Xt+hi
. Since innovations ut are i.i.d. over time, the agent’s

forecast of Xt+h for any h ≥ 0 at a given time t can be written as

E[Xt+h|St] = (I − Ah)E[X̄|St] + AhXt,

where St is what is on top of the agent’s mind at time t. Thus, for any yi,t+hi
:

E[yi,t+hi
|St] = w′i(I − Ah)E[X̄|St] + w′i A

hXt.

Assuming that the agent minimizes a squared sums of errors weighted by W, the resulting objective can
be written as

− 1
2

E[(Yt − E[Yt|St])
′W(Yt − E[Yt|St])|St]

=− 1
2

tr(ΣtHWH′) + terms independent of optimization,

where Σt = Var(X̄|St) is the variance of the long-run mean of Xt given St and H is an n×m matrix whose j’th
column is (I − Ah)′wi. We define Ω ≡ HWH′. Then, the agent’s loss at time t from not knowing the long-run
mean is given by − 1

2 tr(ΣtΩ).
Suppose now that the agent’s prior in the beginning of the period is X̄|Xt ∼ N(Xt, Σ) which is a general-

ized version of the prior assumed in the main text. Conditional on this prior, the agent solves the following
problem (the derivations for which closely follow the proof of Lemma 1):

max
Σ

{
−tr(ΩΣ)−ω

(|Σ||Σ|−1)γ − 1
γ

}
s.t.0 � Σ � Σ,

where (� 0) denotes positive-semi defniteness. This is a convex optimization problem on the positive semi-
definite cone, similar to the problem studied in Afrouzi and Yang (2020). While Afrouzi and Yang (2020) only
consider the case of γ→ 0, we solve for the more general case of γ > 0. Since the cost of inaccuracy approaches
infinity if |Σ| → 0, the optimal subjective variance Σ should have a strictly positive determinant, with all the
eigenvalues of Σ strictly positive (Σ � 0). In other words, we can ignore the constraint Σ � 0 as it should not
bind under the solution. On the other hand, the constraint Σ � Σ, however, potentially binds and needs to be
considered (this intuitively corresponds to the case in which zero costly learning occurs).

We assume Λ is the generalized Lagrange multiplier on this constraint. It follows from convex optimization
that Λ is also positive semi-definite, commutes with X ≡ Σ − Σ, and satisfies complementarity slackness
ΛX = XΛ = 0 (See Afrouzi and Yang (2020) for details). The first order condition is then

Ω = ω|Σ|γ|Σ|−γΣ−1 + Λ,

which can be rewritten as
ΩX = ΩΣ−ω|Σ|γ|Σ|−γ + ΛΣ.

Now multiply this by Σ
1
2 from left and Σ−

1
2 from the right, and observe that

Σ
1
2 ΩΣ

1
2 Σ−

1
2 XΣ−

1
2 = Σ

1
2 ΩΣ

1
2 −ω|Σ|γ|Σ|−γ I + Σ

1
2 ΛΣ

1
2
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Setting Ω̂ = Σ
1
2 ΩΣ

1
2 , X̂ = Σ−

1
2 XΣ−

1
2 , Λ̂ = Σ

1
2 ΛΣ

1
2 , and ω̂ = ω|Σ|γ|Σ|−γ, we obtain:

Ω̂X̂ = Ω̂− ω̂I + Λ̂. (C.1)

Note that X̂Λ̂ = Λ̂X̂ = 0. We can also see that Ω̂X̂ = X̂Ω̂ since the right hand side of Equation (C.1) above
is symmetric. Finally, we can see that Λ̂ and Ω̂ also commute.29 Thus, since Ω̂, X̂t and Λ̂ are all symmetric,
they are all diagonalizable, and given that they all commute with one another, they must be simultaneously
diagonalizable. This implies that there are diagonal matrices DΛ, DX and DΩ, as well as an orthonormal basis
U (UU′ = U′U = I), such that

Ω̂ = UDΩU′, X̂ = UDXU′, Λ̂ = UDΛU′

Now multiplying Equation (C.1) by U from left and U′ from right, we have

DΩDX = DΩ − ω̂I + DΛ, DΛ � 0, DX � 0, DXDΛ = 0.

Given that these equations are in terms of diagonal matrices, the inequality needs to hold entry-by-entry on
the diagonal, implying that for any 1 ≤ i ≤ n:

DX,ii = 1− ω̂ max{DΩ,ii, ω̂}−1,

or in matrix form:

I − X̂ = max{ Ω̂
ω̂

, I}−1 = max{Σ
1
2 ΩΣ

1
2

ω̂
, I}−1, (C.2)

or

Σ = Σ
1
2 max{Σ

1
2 ΩΣ

1
2

ω̂
, I}−1Σ

1
2 , (C.3)

where the only unknown on right hand side is ω̂.
To calculate ω̂, take the determinant of the above equation and note that

det(I − X̂) = det(I − Σ−
1
2 XΣ−

1
2 ) = det(Σ−1Σ) = (

ω̂

ω
)−γ−1

.

Thus, taking the log-determinant of Equation (C.2) (which is permitted because both sides are strictly positive
definite) gives:

log(ω̂) = log(ω) + γ log det

(
max{Σ

1
2 ΩΣ

1
2

ω̂
, I}
)

.

Now let {λi}i∈{1,...,n} denote the eigenvalues of the matrix Σ
1
2 ΩΣ

1
2 (note that these are simply parameters of

the model). Then, we can rewrite this equation as

log(ω̂) = log(ω) + γ ∑
λi≥ω̂

log(
λi
ω̂
). (C.4)

which is an equation only in terms of ω̂ and unique to our case.
To prove the existence of a solution, note that the left hand side is increasing in ω̂ and subjects onto all of

R. On the other hand, the right hand side is decreasing in ω̂, with its range being [log(ω), ∞). Thus, there
is a unique ω̂ that solves this equation (which incidentally is larger than ω for γ > 0 as long as there is at
least one eigenvalue larger than ω). Thus Equations (C.3) and (C.4) together pin down the optimal Σ for the

29To see this, multiply the Equation (C.1) by Λ̂ form right and note that Ω̂Λ̂ has to be symmetric, indicating
that Λ̂Ω̂ = (Λ̂Ω̂)′ = Ω̂Λ̂.
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agent. Therefore, applying standard Kalman filtering results, we obtain that the agent’s belief about the long
run mean is given by

X̄|St ∼ N(X̂t, Σ),

where

E[X̂t|X̄, Xt] = X̄ + Σ
1
2 max{Σ

1
2 ΩΣ

1
2

ω̂
, I}−1Σ−

1
2 (Xt − X̄)︸ ︷︷ ︸

overreaction

.

and Σ is the solution in Equation (C.3).
Consequently, as is the case for our simple AR(1) example, there is a positive loading on the subjective

long-run mean on the most recent observation, which yields overreaction.

D Underreaction
Our model can be extended in a simple way to accommodate underreaction. Following the noisy information
literature (e.g. Woodford (2003) and Khaw, Li and Woodford (2018)), we now assume that the individual
receives a noisy signal of xt:

st = xt + εt, εt ∼ N
(

0, τ−1
ε

)
. (D.1)

Furthermore, the agent has a prior over the latent value xt, given by xt ∼ N
(

x̄, τ−1
0

)
. In this case, the agent

obtains the posterior beliefs regarding the most recent signal:

x̂t|st =
τε

τ0 + τε
st +

τ0

τ0 + τε
x̄. (D.2)

We do not need to take a stance on x̄: as long as the prior does not depend on the value of xt, all of our
conclusions are unchanged. The agent then forms a default belief regarding the long-run mean µ centered
around the noisy recent signal x̂t:

µ̂ ∼ N (x̂t, τ) . (D.3)

Our main model can be seen as a special case (τε 7→ ∞) of this more general case that allows for noisy signals.
The derivations are similar as before and we have:

E[µ|x̂t, St] = min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
x̂t (D.4)

Ftxt+h = ρh · x̂t + (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
x̂t + εt︸︷︷︸

noise

(D.5)

= ρhxt +

 τε

τ0 + τε
(1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
︸ ︷︷ ︸

overreaction

− τ0

τ0 + τε
ρh︸ ︷︷ ︸

underreaction

 xt + constant + εt. (D.6)

Note that when τε 7→ ∞, the equation above converges to our expression in the main text. However, for
finite τε, noisy signals introduce a downward pressure on the loading of the forecast on xt, which counteracts
overreaction. The intuition is simple: the agent’s forecast overreacts to x̂t, but with noisy information, x̂t itself
underreacts to xt. The following proposition derives the conditions for when each force dominates. When the
noise in the signal is small, overreaction is the dominant force.
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The above expression implies the following proposition, which shows that in this model extension the
degree of overreaction is still stronger when the process is less persistent (i.e., ρ is small):

Proposition D.1. Holding fixed the noisy information parameters τε, τ0 < ∞, there is overreaction (ρs > ρ) for
sufficiently low ρ, and underreaction (ρs < ρ) if ρ 7→ 1. If γ ≥ 1, ∆ = ρs

h − ρh is decreasing in ρh.

Proof. We have:

ρh
s − ρh =

τε

τ0 + τε
(1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
− τ0

τ0 + τε
ρh. (D.7)

It is evident that the expression on the right hand side is positive as ρ 7→ 0 (it converges to τε
τ0+τε

(ωτ)
1

1+γ ),
and negative as ρ 7→ 1 (it converges to − τ0

τ0+τε
). For intermediate values of ρ, when ρ is sufficiently high such

that ωτ
(1−ρh)2 > 1, the right hand side becomes:

τε

τ0 + τε
− ρh, (D.8)

which is monotonically decreasing in ρ. When ρ is sufficiently low such that ωτ
(1−ρh)2 < 1, the expression

becomes:

τε

τ0 + τε
(1− ρh)

(
ωτ

(1− ρh)2

) 1
1+γ

− τ0

τ0 + τε
ρh =

τε

τ0 + τε
(ωτ)

1
1+γ (1− ρh)−

γ−1
1+γ − τ0

τ0 + τε
ρh. (D.9)

If we assume γ ≥ 1, each of the terms are decreasing in ρh, which is in line with the empirical evidence.
Overall, in our simple experiment, the signals are rather simple and unambiguous, so the noise is likely

very small. In other environment, signals can be noisier, which may generate underreaction even at the in-
dividual level. Similarly, if we introduce in our model frictions such as insufficient attention and infrequent
updating (Mankiw and Reis, 2002), then we can also obtain underreaction. This is unlikely the case in our
experiment, but it could be more relevant for other settings such as households’ expectations of inflation.

E Model Predictions for Changing What’s on Top of Mind
In this section, we describe our model’s predictions for the additional experiments in Section 6.1 (where we
change what’s on top of mind).

E.1 Setup
We have two main experimental designs to change what is on top of the mind for participants. In the first
condition, we show a red line corresponding to x = 0. In the second condition, we require participants to click
on xt−10 in each round before they can make new forecasts. Both designs aim to change the default context
from the original default, i.e., the most recent realization xt.

In our baseline model, prior beliefs are given by a normal distribution with mean xt and precision τ. We
model these additional tests as providing an extra signal of the long-run mean, I, before the agent decides what
information to utilize. By design, this signal is on average centered around 0 with precision τ̄′. After seeing
the signal I, the belief the agent has regarding the long-run mean is given by:

µ|xt, I ∼ N(zt, τ + τ̄′) (E.1)

Standard Gaussian updating implies that E[zt|xt] = αxt, where α = τ
τ+τ̄′ < 1.
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After processing the signal, the agent then processes additional information. Following our experimental
design, we assume h = 1 for simplicity. Using the same computation as in the main model, we obtain:

E[µ|xt, St, I] = min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
zt, (E.2)

and consequently:

ρs
I = ρ + (1− ρ) ·min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
· τ

τ + τ̄′
. (E.3)

In comparison, our original expression is:

ρs = ρ + (1− ρ) ·min

{
1,
(

ωτ

(1− ρ)2

) 1
1+γ

}
. (E.4)

E.2 Result
We have the following proposition:

Proposition E.1. The implied persistence curve in the new conditions ρs
I lies below the original implied per-

sistence curve ρs. In other words, ρs
I < ρs for each level of actual ρ (except ρ = 1).

Proof. It suffices to show:

min

{
1,
(

ωτ

(1− ρ)2

) 1
1+γ

}
> min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
· τ

τ + τ̄′
. (E.5)

The above inequality is trivially true if 1 <
(

ωτ
(1−ρ)2

) 1
1+γ

<
(

ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ . Furthermore, if

(
ωτ

(1−ρ)2

) 1
1+γ

<(
ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ

< 1, then note that both sides of the equation simplify to:

(
ωτ

(1− ρ)2

) 1
1+γ

>

(
ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

· τ

τ + τ̄′

⇐⇒
(

τ

τ + τ̄′

) 1
1+γ

>
τ

τ + τ̄′
,

(E.6)

which is clearly true for γ ≥ 0.

Thus, it suffices to show the inequality for the case
(

ωτ
(1−ρ)2

) 1
1+γ

< 1 <
(

ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ , where the expression

simplifies to showing: (
ωτ

(1− ρ)2

) 1
1+γ

>
τ

τ + τ̄′
. (E.7)

This is clearly true, as:

(
ωτ

(1− ρ)2

) 1
1+γ

=

(
ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

·
(

τ

τ + τ̄′

) 1
1+γ

>

(
τ

τ + τ̄′

) 1
1+γ

>
τ

τ + τ̄′
. (E.8)
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Figure A.12: Model Prediction for Implied Persistence in Additional Treatment Conditions

This figure shows the theoretical prediction of the implied persistence for our experimental interventions. We
use τ0 = τ/α and α = 0.6. The black dotted line shows the model’s prediction for implied persistence in the
baseline experiment. The red solid line shows the prediction for the additional experiments described above.
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