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Abstract

We propose a novel model-free approach to infer a joint risk-neutral dependence among

several assets. The dependence can be estimated when traded options are available on individ-

ual assets as well as on their index. In the empirical application, we implement our approach

using options on the S&P 500 index and its nine sectors. We find that option-implied de-

pendence is highly non-normal and time-varying. Using the estimated dependence, we then

study the correlation risk conditional on the market going down or up. We find that the

risk premium for the down correlation is strongly negative, whereas it is positive for the up

correlation. These findings are consistent with the economic intuition that the investors are

particularly concerned with the loss of diversification when financial markets fall. As a result,

they are willing to pay a considerable premium to hedge against increases in correlation during

turbulent times. However, the investors actually prefer high correlation when markets rally.

Key-words: Model-free dependence, implied correlations, forward-looking dependence, down and

up correlation.

1 Introduction

There are well developed techniques to infer the forward-looking risk-neutral distribution of an

asset return when a wide range of traded options on this asset is available. These techniques rely

on the no-arbitrage relationship first examined by Ross (1976), Breeden and Litzenberger (1978),

and Banz and Miller (1978) and can estimate risk-neutral distributions in a model-free way;

see, for example, Jackwerth and Rubinstein (1996), Aı̈t-Sahalia and Lo (2000), and Bondarenko

(2003). In this paper, we generalize this approach to higher dimensions in that we use the prices
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of options written on individual assets as well as on the corresponding index to fully describe the

dependence among assets in a forward-looking way, i.e., we derive a risk-neutral dependence.1

Our method is new and builds on the Block Rearrangement Algorithm2 (BRA) presented in

Bernard, Bondarenko, and Vanduffel (2018). They show that finding a dependence among asset

returns that is compatible with all available option prices on the assets and their weighted sum

(the index), can be cast as a combinatorial problem in which a matrix needs to be arranged in

a suitable manner. While there might be various compatible dependence structures, the BRA is

shown to the most natural one in the sense that one obtains the “most likely” implied dependence

among asset returns given the information comprised in available option prices and given that

no additional prior information is used. Our method makes it possible to obtain a complete

spectrum for the implied dependence among asset returns and thus compares favorably with

existing methods for estimating dependence, which primarily focus on the average correlation

among asset returns. Moreover, our approach makes it possible to study dependence conditional

on specific events, such as the market going down or up.

As a main application, we use our method to study correlation risk premia. Specifically, using

options on the S&P 500 and its nine sectors, we find evidence of a slightly negative correlation

premium and, as such, confirm results reported, among others, in Driessen, Maenhout, and Vilkov

(2012), Buraschi, Trojani, and Vedolin (2014), Faria, Kosowski, and Wang (2016), and Buss,

Schoenleber, and Vilkov (2017). These authors also use option data to assess implied dependence

in a forward-looking way, but their methodology cannot be used for the study of possible state-

dependent features of correlations. In particular, we study the down and up correlations (i.e.,

correlations conditional on the S&P 500 return being below or above its median value) and find

that the risk premium is significantly negative for the down correlation, is significantly positive for

the up correlation, and only marginally negative for the global correlation. Thus, the contribution

of the global negative correlation premium that was found in Driessen, Maenhout, and Vilkov

(2009, 2012) derives mainly from the difference between real-world and risk-neutral correlations

when the market is going down. This feature confirms the economic intuition that the correlation

premium is linked to the loss of diversification risk when the market falls (Driessen, Maenhout, and

Vilkov (2009), Buraschi, Kosowski, and Trojani (2013)). Additional discussion of the correlation

risk premium3 and its link to macroeconomic variables can be found in Faria, Kosowski, and

Wang (2016), Engle and Figlewski (2014), Mueller, Stathopoulos, and Vedolin (2017), Pollet and

Wilson (2010), Harvey, Liu, and Zhu (2016), and Cosemans (2011).

1Specifically, we derive in a first step a risk-neutral joint distribution of assets (X1, ..., Xd). Clearly, this joint
distribution is driven by the dependence among the assets, but also by their marginal distribution functions Fi.
By applying in a second step the transformation Xi → Fi(Xi) we bring the assets on the same uniform scale and
dependence becomes fully described by the joint distribution of (F1(X1), ..., Fd(Xd).

2The Block Rearrangement Algorithm generalizes the standard Rearrangement Algorithm introduced by Puccetti
and Rüschendorf (2012). This algorithm has has applications in various disciplines. Embrechts, Puccetti, and
Rüschendorf (2013) use the RA in quantitative risk management to assess the impact of model uncertainty on
Value-at-Risk estimates for portfolios. The algorithm has also important applications in operations research (fair
allocation of goods) and engineering (image reconstruction). .

3The correlation risk premium is also closely related to the variance risk premium (Bollerslev and Todorov
(2011), Schneider and Trojani (2015)) and is positively related to the disagreement risk (Buraschi, Trojani, and
Vedolin (2014)).
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As already mentioned, we are not the first to estimate implied dependence and correlation

risk premia using option data. A first attempt to measure implied dependence was proposed by

the Chicago Board Options Exchange (CBOE), which started to disseminate S&P 500 Implied

Correlation Indexes in July 2009.4 These are now well accepted dependence measures, based on

individual implied volatilities and index implied volatility, and thus driven solely by option prices.

The CBOE approach has been significantly improved and applied to the estimation of cor-

relation risk premia by Driessen, Maenhout, and Vilkov (2009, 2012). Specifically, Driessen,

Maenhout, and Vilkov (2009) were the first to find evidence of priced correlation risk and to pro-

vide a risk-based explanation for it. Index options are expensive (i.e., correlation risk is priced)

because they allow investors to insure agains the risk of a loss in diversification benefits they

experience during turbulent times when correlations are high. Driessen, Maenhout, and Vilkov

(2012) propose a stochastic correlation model that is driven by ideas that underpin the CBOE

approach and show it can be used to extract the implied average correlation (they assume equal

correlations for each pair of stocks). Using data on index and individual options for all index

constituents, they estimate the times-series of the implied average correlation for the S&P500 and

DJ30 index and show these are significantly higher than the average realized correlations. The

model of Driessen, Maenhout, and Vilkov (2012) is parsimonious in that at time t all pairwise

correlations are identical and driven by a mean reverting process ρ(t) (in the same spirit as in

Cochrane, Longstaff, and Santa-Clara (2008)). Buss and Vilkov (2012) and Buss, Schoenleber,

and Vilkov (2017) are able to relax the assumption that all pairwise correlations are equal, but

this comes with the cost of imposing additional structure on dependence. We further discuss the

features of these methods in Section 2.

The CBOE methodology and its improvements are confronted with two main challenges. First,

they provide an incomplete measurement of dependence insofar as the obtained (average) pairwise

correlations provide a limited perspective on dependence among assets. In contrast, our method

yields a complete joint model for the asset returns and thus also depicts the full spectrum of

dependence. Furthermore, it is documented in the literature that correlations among companies

are time-dependent and tend to be stronger in market downturn phases; see for instance Bollerslev,

Engle, and Wooldridge (1988) for empirical evidence under the historical probability measure.

Finding such evidence in a forward-looking way is not possible using CBOE implied correlations,

since these cannot be linked to specific market states. Using our methodology, however, we are

able to measure correlation risk premia conditional on the market going down or up and to provide

for the first time evidence that they are linked directly to the desire of investors to hedge against

the loss of diversification in downturns.

The rest of the paper is organized as follows. In Section 2, we discuss the state of research on

implied correlation and review, in particular, the methodology used by the CBOE to calculate its

correlation indices. In Section 3, we present our method for inferring dependence among several

assets. In Section 3, we implement the approach using options written on the S&P 500 index and

on each of the nine sectors that comprise the index. In Section 5, we introduce new correlation

4The methodology is outlined in a white paper from the Chicago Board Options Exchange (2009).
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indices and study the correlation risk-premium. We conclude in Section 6.

2 State of Research on Estimating Implied Correlation

To better understand their features and limitations, we review in this section existing approaches

to extracting forward-looking estimates of dependence from option prices. We first discuss the

so-called CBOE implied correlation index, followed by a discussion of alternative approaches

that arise from recent literature on estimating the correlation risk premium and tail risk. These

approaches are certainly useful, but they are also limited in that they make it neither possible to

derive a complete dependence nor to assess its state-dependent features without making strong

model assumptions. As far as we are aware only the approach that we outline in Section 3

overcomes these limitations.

2.1 CBOE Implied Correlation Index

The methodology used by CBOE to construct implied correlation indices is explained in a white

paper on the CBOE S&P 500 implied correlation index (Chicago Board Options Exchange (2009)).

Using ATM option prices, this index is an attempt to estimate the average pairwise correlation

among the stocks that comprise the S&P 500 index. It thus displays some information on depen-

dence under the risk-neutral probability. In what follows, we summarize the CBOE methodology

and discuss its properties.

Let St =
∑

i ωi,tXi,t denote a weighted index value. For ease of presentation, we omit the

time index t. Let us recall the following relationship between the variance of the index and the

variances of its components:

var(S) =
d∑
i=1

ω2
i var(Xi) + 2

d−1∑
i=1

∑
j>i

ωiωjρij

√
var(Xi)

√
var(Xj), (2.1)

in which ρij is the correlation between Xi and Xj . The basic idea of the CBOE implied correlation

index is to replace in equation (2.1) the different ρij by a single number ρ, which thus can be

interpreted as an average correlation among the index components. However, the variances are

not estimated from past return data but are forward-looking option-implied measures. That is,

they are the square of the implied ATM volatilities for the index and its components. Specifically,

the implied volatility for the index, σS , solves the following equation:

CS = BSCall(S0,K, r, T, σS , q), (2.2)

where CS is the market price of an ATM call on the index with strike K = S0, r is the continuously

compounded risk-free rate, q is the dividend yield, S0 the initial index price, and BSCall denotes

the Black-Scholes price of a call option on a single asset with maturity T and strike K. The

same process is used on each of the components of the index to compute their respective implied
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volatilities. Implied volatilities are standard deviations of log-returns under the assumption that

these are normally distributed. So, using equation (2.1), in which variances are substituted by

the square of implied volatilities, would be justified when log(S) =
∑

i ωi log(Xi), which is not the

case (see Appendix A for further discussion). Hence, some bias is introduced, and we can only

state that

σ2S ≈
d∑
i=1

ω2
i σ

2
i + 2

d−1∑
i=1

∑
j>i

ωiωjσiσj ρ̃ij (2.3)

where σi and σj denote the individual implied volatility of the index components i and j, ωi and

ωj are the weights of i and j in the index, and ρ̃ij is the pairwise correlation of index components

log(Xi) and log(Xj). The CBOE correlation index is then obtained by replacing ρ̃ij in (2.3) with

a single correlation number that we denote by ρcboe :

ρcboe =
σ2S −

∑d
i=1 ω

2
i σ

2
i

2
∑d−1

i=1

∑
j>i ωiωjσiσj

. (2.4)

Here, d = 50 since the CBOE correlation index is defined using a subset of the 50 largest com-

ponents of the index, measured by market capitalization. Furthermore, the weights are defined

by

ωi =
PiYi∑d
j=1 PjYj

,

where Pi is the price of the ith index component and Yi is the “float-adjusted shares outstanding

of the ith index component,” and, finally, the implied volatility σi of each component of the subset

of 50 stocks is an ATM volatility (interpolated between strikes if no ATM options are available).

The exact procedure is described in the CBOE white paper (Chicago Board Options Exchange

(2009)).

Assuming that the approximation (2.3) is exact, we obtain that the expression of ρcboe in (2.4)

can be written as an average pairwise correlation

ρcboe =

∑
i<j ωiσiωjσj ρ̃ij∑
i<j ωiσiωjσj

. (2.5)

However, since the approximation (2.3) is not exact, the CBOE implied correlation index cannot

be strictly interpreted as an average pairwise correlation coefficient, and it can potentially take

values that are strictly larger than 1.5 A more detailed discussion on the limitations of the CBOE

index and of cases in which this implied correlation index can be accurately interpreted as an

average pairwise correlation is provided in Appendix A.

5For example, the KCJ index was 100.8 on November 6, 2008, 105.93 on November 13, 2008, and 103.4 on
November 20, 2008.
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2.2 Improved Approaches to Implied Correlations

The CBOE methodology for estimating the implied correlation index ρcboe has spurred research

on estimating correlation risk premia, which in turn has led to further improvements of the CBOE

methodology. Most notably, Driessen, Maenhout, and Vilkov (2012) use the same expression as

in the CBOE implied correlation index formula, but the variances are not driven by at-the-money

options only, but rather based on all option prices from which risk-neutral densities and next

variances are deduced (see Bakshi, Kapadia, and Madan (2003) and Britten-Jones and Neuberger

(2000)). The model of Driessen, Maenhout, and Vilkov (2012) is relatively parsimonious in that at

time t all pairwise correlations are assumed to be equal to ρ(t), which is a mean reverting process

(in the same spirit as Cochrane, Longstaff, and Santa-Clara (2008)). The model is illustrated using

S&P 500 and DJ30 options; see also Skintzi and Refenes (2005). Clearly, the only restriction,

which is that the index variance equates with the variance of the portfolio of index components,

is insufficient to pin down the entire correlation structure, i.e., there are still many possible ways

to construct the dependence among the components.

Buss and Vilkov (2012) allow pairwise correlations among the assets to differ by making the

structural assumption that ρQij − ρPij = α(1 − ρPij) with α ∈ (0, 1), P as the real-world measure

and Q as the risk-neutral measure. The parameter α is computed from historical correlation

values, weights, and implied variances. Knowing α, the correlation matrix under the risk-neutral

probability can be derived. By construction, the implied correlation matrix is positive definite

with all coefficients between -1 and 1, the correlation risk premium is negative (ρQ > ρP), and the

correlation risk premium is higher in magnitude for low or negatively correlated stocks that are

exposed to a higher risk of losing diversification benefits, which is consistent with the literature

(Mueller, Stathopoulos, and Vedolin (2017)). Buss and Vilkov (2012) combine the option-implied

correlations with option-implied volatilities to compute implied betas and show their better pre-

dictive quality with respect to future realized betas. Buss, Schoenleber, and Vilkov (2017) also

impose additional structure and relax the equal pairwise correlation constraint by estimating a

block diagonal heterogeneous correlation matrix. These authors apply their method to study im-

plied correlations inferred from the S&P 500 ETF (economy) and its nine sector ETFs (economic

sectors).

A very different approach to capturing information on the dependence using option prices

is proposed by Kelly, Lustig, and Van Nieuwerburgh (2016). Their idea is as follows: There

is always a negative difference between the price of a basket option and the weighted sum of

individual options written on the index’s components with well chosen strikes, in which equality

can only be obtained when the assets exhibit perfect positive dependence (comonotonicity). This

finding motivates the use of this difference among prices as a measure of dependence; the more

negative the difference, the smaller the correlation (see also Kelly and Jiang (2014)).

Deriving forward-looking information on the dependence among assets is an important but

difficult issue. One common limitation of the existing literature is that only partial dependence

information is obtained; either average correlation estimates are derived or several additional
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assumptions need to be made in order to obtain an (unconditional) correlation matrix under

the risk-neutral probability measure. By contrast, our approach makes it possible to obtain a

dependence structure without imposing any restrictions and to relate it to market states. One

of the key features is that we fully use the information on all options with given maturity on an

index and on all its components. Specifically, in the next section we outline a novel approach that

enables us to extract a compatible dependence structure using these option prices. It allows us

to derive the full dependence among assets and not only some specific aggregate statistics, such

as the global correlation.

3 Methodology for Inferring Dependence

Our method for inferring dependence among assets is model-free in that it is driven solely by the

available information on index options and options on its components. Moreover, the dependence

structure obtained is consistent with maximum entropy and thus the most likely one given the

available financial data and given that no further prior information is used other than that revealed

by option prices.

To fix notation, let C(K) and P (K) denote the time-t price of the European-style call and

put options with strike K and fixed maturity T on the underlying asset X. Under the standard

assumptions, the option prices are equal to the expected value of their payoffs under a suitably

chosen risk-neutral probability measure Q:

C(K) = e−rτEQ [(X −K)+
]

= e−rτ
∫ ∞
0

(x−K)+ f(x) dx,

P (K) = e−rτEQ [(K −X)+
]

= e−rτ
∫ ∞
0

(K − x)+ f(x) dx,

where τ = T − t is time to maturity and f(x) denotes the risk-neutral density (RND). The RND

satisfies the relationship first established by Ross (1976), Breeden and Litzenberger (1978), and

Banz and Miller (1978):

f(x) = erτ
∂2C(K)

∂K2

∣∣∣∣
K=x

= erτ
∂2P (K)

∂K2

∣∣∣∣
K=x

. (3.6)

Similarly, the risk-neutral cumulative distribution (RNCD) satisfies:

F (x) = erτ
∂C(K)

∂K

∣∣∣∣
K=x

= erτ
∂P (K)

∂K

∣∣∣∣
K=x

. (3.7)

Although not directly observable, the RNCD can be recovered using the relationship in (3.7),

provided that prices of options with continuum of strikes K ∈ R are available. In practice,

option prices are only available for a finite number of strikes. Nevertheless, a number of efficient

nonparametric approaches have been proposed in the literature that make it possible to circumvent
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this shortcoming; see, for example, Jackwerth and Rubinstein (1996), Aı̈t-Sahalia and Lo (2000),

and Bondarenko (2003).

Consider now an index with d assets. For ease of exposition we assume that all weights are

equal to one. Denote by Xj,t the value of each component at some given date t so that the

value of the index is St =
∑d

j=1Xj,t. When there is no confusion, we simplify notation and drop

the time index t. For example, we write Xj instead of Xj,t and S instead of St. We assume

that the options market offers sufficient strikes in that the risk-neutral distributions F1, . . . , Fd

for the assets X1, . . . , Xd can be estimated accurately. In addition, assume that the risk-neutral

distribution FS of the index itself can be estimated from the index options. Option prices are thus

used to estimate the marginal distributions of the assets, and information on their dependence

appears through knowledge of the marginal distribution of the index.

Armed with the risk-neutral cumulative distributions for the d assets and for the index, we

construct a multivariate distribution for the d assets that is consistent with this information. We

start by approximating each asset’s RNCD with a discrete distribution (which can be done to any

degree of accuracy), and we then build a dependence among these discrete distributions. For each

asset j ∈ {1, . . . , d}, the distribution of Xj is approximated as follows. There are n possible states

and Xj takes on the values xij , i = 1, . . . , n with a probability 1/n. Specifically, these elements

xij are defined as the realizations xij := F−1j ( i−0.5n ) (i = 1, . . . , n). Using this discretization, we

are able to represent the multivariate vector of assets (X1, X2, ..., Xd) by a n× d matrix:
x11 x12 . . . x1d

x21 x22 . . . x2d
...

...
. . .

...

xn1 xn2 . . . xnd

 ,

where the j-th column corresponds to the j-th asset Xj and where each i-th row represents a

state of the world in which a joint outcome (X1 = xi1, . . . , Xd = xid) occurs with probability

1/n. If one permutes the order of the values in the j-th column, then the marginal distribution of

Xj remains unchanged because all realizations are equally likely. In contrast, the dependence of

Xj with the other variables Xk for k 6= j is affected, since permutations yield other joint events

having probability 1/n.

To infer the joint dependence among variables X1, . . . , Xd with known marginal distributions

and for which the distribution of the sum S is also known, it is convenient to add one column to

the above matrix and to introduce the following n× (d+ 1) matrix M :

M =


x11 x12 . . . x1d −s1
x21 x22 . . . x2d −s2

...
...

. . .
...

...

xn1 xn2 . . . xnd −sn

 . (3.8)

In the last column, the elements −si are all possible realizations of the sum −S; i.e., si :=
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−F−1S ( i−0.5n ), in which FS is the distribution function of S.

3.1 Toy example

To explain the method for constructing a joint dependence, we begin with an oversimplified

example. There are d = 3 assets and n = 5 discetization steps. Therefore, X1, X2, X3 and −S
all take five values with probability 1/5, which we report in a matrix:

M =


1 1 0 −19

2 2 2 −13

3 3 3 −10

5 5 4 −8

6 7 9 −6

 . (3.9)

The first three columns of matrix M thus depict the random vector (X1, X2, X3). Its joint

outcomes are displayed in five rows, each row reflecting one of the five states of the world occurring

with probability 1/5. The random vector (X1, X2, X3) is not yet admissible in that the five row

sums (taken over the first three columns) do not match the realizations of S, i.e., we do not yet

meet the constraint that X1 +X2 +X3−S = 0. However, permuting elements within a column is

allowed, as it does not affect marginal distributions. We thus aim at permuting elements within

columns such that X1 + X2 + X3 − S = 0 (in other words, such that the row sums in M are all

equal to zero).

With only five rows, it might be feasible to try all possible permutations. However, in a

realistic situation one could not try all possible permutations, as there would be too many possible

configurations. In our empirical application, we will employ our method using at least n = 1, 000

discretization points (states of the world), and we therefore need an efficient way to obtain a

candidate solution. To achieve such efficiency, we observe that the condition X1+X2+X3−S = 0

is equivalent to the condition that X1+X2+X3−S has zero variance. Clearly, in order to minimize

the variance of X1 +X2 +X3−S, it must hold that X1 is as negatively correlated as possible with

X2 +X3 − S, which means that the elements of the first column of the matrix M in (3.9) should

appear in opposite order (are antimonotonic) to those that correspond to X2 + X3 − S. Since

permuting (rearranging) values within columns does not affect marginal distributions, we thus

rearrange the values in the first column to achieve this situation. Let us illustrate this statement

on the first column of the matrix displayed in (3.9), which is rearranged such that its realizations

are placed in opposite order to the realizations of X2 +X3 − S. We obtain the matrix M(1):

X2 +X3 − S =


−18

−11

−3

2

10

 M(1) =


6 1 0 −19

5 2 3 −13

3 3 4 −10

2 5 5 −8

1 7 9 −6

 . (3.10)
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For the starting configuration M, we have that var(X1 +X2 +X3 − S) = 126; after rearranging

its first column, however, one obtains M(1) and var(X1 +X2 +X3−S) = 58 is strictly decreased.

We then repeat this process for each of the subsequent columns of the matrix. We can further

improve this procedure by noting that in order to yield zero row sums we actually need that

X1 +X2 to be antimonotonic to X3 − S and, likewise, X1 +X3 to be antimonotonic to X2 − S,

and X2 +X3 to X1 − S. The application of this procedure to the toy example is fully described

in Appendix B and after 12 steps leads to the following output:

M̃ = M(12) =


5 5 9 −19

3 3 0 −6

1 7 5 −13

6 1 3 −10

2 2 4 −8

 . (3.11)

We thus obtain the ideal situation that the row sums of the rearranged matrix are all equal to

zero, i.e., we have found an admissible multivariate model for the assets (X1, X2, X3) that is

consistent with the distribution function of their sum S and which can now be used to compute

various statistics of interest. For instance, we can find that P (X2 > 3|X1 > 3) = 0.5. In order to

specifically study the dependence among the three assets, we remove the effect of the marginal

distributions by applying the transformation Xi → Fi(Xi) (i=1,2,3). We obtain

Ũ =


0.8 0.8 1

0.6 0.6 0.2

0.2 1 0.8

1 0.2 0.4

0.4 0.4 0.6

 . (3.12)

In practice, due to discretization errors and the fact that the algorithm is a heuristic, the

variance of the row sums might not be exactly equal to zero. Indeed, finding a perfect rearrange-

ment is an NP-complete problem (Haus (2015)), which means that, most likely, there exists no

deterministic algorithm with polynomial complexity. Thus, the above procedure can only be a

heuristic. In practice, however, the procedure performs extremely well (Bernard, Bondarenko,

and Vanduffel (2018)) and the remaining noise can be ignored. A full exposition of the method

is relegated to Appendix C.

3.2 Discussion

In Bernard, Bondarenko, and Vanduffel (2018) it is shown that the obtained multivariate model for

(X1, X2, ..., Xd) exhibits maximum entropy in that it yields the “most likely”6 configuration given

6In this regard, it is also worth citing Jaynes (2003, p. 370), who developed the principle of maximum entropy
in its modern form and who stated “In summary, the principle of maximum entropy is not an oracle telling which
predictions must be right; it is a rule for inductive reasoning that tells us which predictions are most strongly
indicated by our present information.”
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the information present in available option prices and given that no additional prior information

is used. To make clear what is meant by “most likely,” let us take a step back and assume

for a moment that we only have information on the marginal distributions of the assets, i.e.,

we only agree on the values that appear in the first d columns but not on the order in which

they appear, i.e., all permutations within columns are equally plausible and there is no reason

to privilege one permutation over another. Hence, randomizing the assignment of realizations to

the different states leads to marginal distribution functions (reflected by the columns) that are

most likely to be independent, which corresponds precisely to the maximum entropy case. Using

the additional known information, namely, the marginal distribution of the sum, merely implies

that the set of admissible permutations reduces to those that yield row sums that are zero. Our

method implements the idea of randomizing the assignment of realizations to the different states,

but now under the additional constraint provided by distribution of the index. In the context

of inference of marginal RNDs from observed option prices, the principle of maximum entropy

has been explored in Rubinstein (1994) and in Jackwerth and Rubinstein (1996) and has been

employed in Stutzer (1996).

4 Empirical Application

In this section, we present an empirical application of our algorithm for assessing dependence

using daily prices for ETF options (with approximately one month maturity) written on the

nine SPDR sector funds and on the SPDR S&P 500 ETF Trust. These ETFs seek to provide

investment results that, before expenses, correspond generally to the price of the S&P 500 index

and of the corresponding nine economic sectors. Abbreviated names for the ETFs are provided in

Table 4.1. Our sample covers the time period April 1, 2007 until June 12, 2017. We first discuss

the main characteristics of the sample over the nine sectors and the aggregate market.

Description Ticker Abbreviation

Consumer Discretionary Sector SPDR Fund XLY cdi
Consumer Staples Sector SPDR Fund XLP cst

Energy Sector SPDR Fund XLE ene
Financial Sector SPDR Fund XLF fin

Health Care Sector SPDR Fund XLV hea
Industrial Sector SPDR Fund XLI ind
Materials Sector SPDR Fund XLB mat

Technology Sector SPDR Fund XLK tec
Utilities Sector SPDR Fund XLU uti

SPDR S&P 500 ETF Trust SPY spx

Table 4.1: S&P 500 Sectors. This table lists the underlying assets used in this study. Option prices for
these assets are obtained from OptionMetrics. The sample period is from April 1, 2007 to June 12, 2017.

In the first panel of Figure 4.1, the cumulative returns of three specific sectors and of the S&P

500 are represented. The corresponding ATM implied volatilities are displayed in the second panel

11



of Figure 4.1. Individual sectors typically display more variable performance than the S&P 500

cumulative return, with very different behavior over time. During the 2008–2009 financial crisis,

the financial sector started to decline first and then the crisis spread to the other sectors (i.e., a

contagion effect was particularly observed in the last quarter of 2008 onwards), whereas during

the 2015 energy crisis, primarily the energy sector was affected. The ATM implied volatilities are

highly correlated and, as expected, the implied volatility of the financial sector is much larger

than those for the other sectors in 2008–2010, whereas the implied volatility of the energy sector

dominates in 2014–2015.

Table 4.2 provides various summary statistics for the nine sectors and the S&P 500 index.

In particular, from Table 4.2, we observe that the ATM implied volatilites are consistently

smaller than the standard deviations of the estimated risk-neutral densities. This bias reflect

non-normality of sector’s risk-neutral densities, which manifest itself in the volatility skew (in

the Black-Scholes model ATM implied volatility and σRND have to be equal). Consistent with

the literature on the variance risk premium (e.g., Bollerslev, Tauchen, and Zhou (2009), Todorov

(2010), Carr and Wu (2009), Bondarenko (2014)), we also observe a significant positive variance

risk premium, as the standard deviations in the risk-neutral world, σRND, are consistently larger

(across all sectors and the index) than the ones under the real-world measure (the second column

of Table 4.2).
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Figure 4.1: Cumulative Returns and ATM Implied Volatilities. The pink vertical lines indicate
the period corresponding to the financial crisis (August 1, 2007 to July 1, 2008). The green vertical lines
show two selective days: September 8, 2008, and November 20, 2008. Shown are three sectors (fin, tec,
ene), as well as the S&P 500 index (the black line).
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Mean StDev Skew Kurt Corr Beta SR Weight IV σRND

mat 0.056 0.216 -0.27 4.59 0.90 1.28 0.24 0.03 0.237 0.255
ene 0.033 0.220 -0.38 3.59 0.73 1.07 0.13 0.11 0.257 0.271
fin 0.010 0.247 -0.61 5.18 0.87 1.43 0.02 0.16 0.270 0.292
ind 0.082 0.192 -0.51 4.86 0.94 1.19 0.40 0.11 0.207 0.224
tec 0.102 0.171 -0.60 3.84 0.91 1.03 0.57 0.22 0.194 0.209
cst 0.081 0.116 -0.76 4.11 0.78 0.60 0.66 0.11 0.142 0.161
uti 0.040 0.140 -0.88 4.04 0.50 0.47 0.25 0.03 0.174 0.189
hea 0.090 0.140 -0.59 3.62 0.81 0.74 0.61 0.13 0.168 0.186
cdi 0.103 0.182 -0.26 4.43 0.92 1.10 0.54 0.11 0.208 0.226
spx 0.064 0.151 -0.69 4.42 1.00 1.00 0.39 0.183 0.197

Table 4.2: Summary Statistics. The table reports time-series averages over our sample for the nine
sectors and for the aggregate market. The first six columns are computed from the monthly returns
and include the mean, standard deviation, skewness, kurtosis, correlation with the market, beta with the
market, and the Sharpe ratio (SR). The last three columns include the sector weight, option ATM implied
volatility (IV), and standard deviation of the RND (σRND). The statistics are reported in annualized form
and as decimals.

4.1 Implied Dependence for Selective Days

We now illustrate our approach for estimating dependence on two selective dates, September 8,

2008, and November 20, 2008. These two dates are both in the midst of the financial crisis, but

the former represents a relatively calm period and the latter represents an extremely turbulent

one during the financial crisis. As we will show, they display vastly different implied dependences.

We first use options with one month maturity to obtain the risk-neutral marginal distributions

Fj of the nine sectors Xj and FS of the S&P 500 index S. We use n = 1, 000 states for discretizing

the distributions and apply the method provided in Section 3 to obtain an n× 10 matrix, which

displays a joint model for the sectors Xi and the index S compatible with all marginal information.

Even though we thus fully obtain the joint distribution and thus also the dependence among

these nine sectors and the index, we need to make choices in displaying it, as we cannot represent

a dependence in ten dimensions. Hence, from the n × 10 output matrix, we will extract triplets

(xi, yi, zi) for i = 1, . . . , n to studying the dependence among the S&P 500 index (xi), the financial

sector (yi), and the utilities sector (zi). We present our findings in Figures 4.2 and 4.3:

We remove the effect of the marginal distributions on the joint distribution and display in

the first column the scatterplots (FS(xi), Ffin(yi)) for the top panel and (FS(xi), Futi(zi)) for

the bottom panel. By doing so we bring all returns to the same (uniform) scale and obtain

a visualization of true dependence. However, it is typically easier to interpret and visualize

dependence between normally distributed variables instead of standard uniform distributions.

Therefore, the graphs in the second column represent scatterplots of transformed variables that

are now standard normal distributions by applying an additional transformation based on the

quantile function Φ−1 of a standard normal distribution (normalized dependence). Let GS(x) :=

Φ−1 (FS(x)) denote this transformation for the S&P 500 index, while Gfin(x) and Guti(x) are
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Figure 4.2: Implied dependence on September 8, 2008. The first column shows the dependence
of the financial sector (top panels) and the utilities sector (bottom panels) relative to the S&P 500 index.
The middle column shows the same dependence, but after transformation to normally distributed variables.
The third column displays the corresponding contour plots.

defined similarly for the financial and utilities sectors, respectively. In the middle column, we

then show scatterplots for the couples (GS(xi), Gfin(yi)) in the top panel and for the couples

(GS(xi), Guti(zi)) in the bottom panel. In the third column, we display the corresponding contour

plots. These contour plots can easily be interpreted by looking at deviations from perfect ellipsoids.

Indeed, when the dependence is Gaussian, these contours must be ellipsoids. From Figures 4.2

and 4.3, we find that for the financial sector the dependence on both days is strongly positive and

appears to be rather symmetric, with left and right tails that are both pronounced. However, the

left tail appears to be stronger than the right one. In contrast, the dependence for the utilities

sector is much weaker on September, 8, 2008, but becomes asymmetric with a stronger lower tail

on November 20, 2008. The dependencies for both sectors are noticeably more pronounced on the

second date.

To further describe the features of the displayed dependence, we zoom in on some summary

measures. From the output of the algorithm, we compute the pairwise correlations between sectors

Xi and Xj . Specifically, we compute

ρQi,j = corrQ (Ri, Rj) , (4.13)

in which

Ri :=
Xi,t

Xi,0
, Rj :=

Xj,t

Xj,0

are returns for sectors Xi and Xj , respectively, over the period [0, t].

Specifically, our base estimator for correlations is the usual sample Pearson correlation co-
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Figure 4.3: Implied dependence on November 20, 2008. The first column shows the dependence
of the financial sector (top panels) and the utilities sector (bottom panels) relative to the S&P 500 index.
The middle column shows the same dependence but for normally distributed variables. The third column
displays the corresponding contour plots.

efficient that is calculated on the basis of the last sixty observed daily sector returns.7 While

this classic estimator has highest possible efficiency under normality, it is also well known that

efficiency drops significantly if the distribution changes, and its value can be misleading if outliers

are present. To deal with lack of robustness, we also assessed correlations using the sample rank

correlation coefficient (Spearman correlation coefficient), which is a simple non-parametric esti-

mator that is known to present a good compromise between efficiency and robustness (Croux and

Dehon (2010)). This analysis confirms that that all conclusions made in this section are robust

to the estimation method.

We represent all pairwise correlation coefficients on the left panels of Figure 4.4 for September

8, 2008 and of Figure 4.5 for November 20, 2008. We observe that the financial, energy, and

technology sectors are highly correlated and diversify little with the other sectors. The best

diversifiers are clearly the sectors of materials and of utilities. The average global correlation is

0.665 for September 8, 2008 and 0.88 for November 20, 2008.

We are also able to compute two additional correlation coefficients that are critical to the

understanding of what drives dependence in relation to market states. We define the down and

up correlation coefficients as correlations conditional on the S&P 500 having a low or high return,

respectively. Specifically,

ρd,Qi,j = corrQ(Ri, Rj |RS 6 RMS ) (4.14)

7See Jackwerth and Vilkov (2015) for a discussion of the impact of frequency on the estimation of real-world
correlations
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and

ρu,Qi,j = corrQ(Ri, Rj |RS > RMS ), (4.15)

where RMS denotes the median index return of the S&P 500 index.8

In the above definitions, if we replace Xj with the S&P 500 index S, we obtain the global

correlation ρQi,S as well as the down and up correlations of sector i with the index, that is, ρd,Qi,S
and ρu,Qi,S . We plot the former versus the latter on the right panel of Figure 4.4 for September 8,

2008 and of Figure 4.5 for November 20, 2008. There are nine points corresponding to the nine

sectors. Also shown is the first bissectrix ρd,Qi,S = ρu,Qi,S .

From Figures 4.4 and 4.5, it is clear that the down correlations tend to be much higher than

the up correlations, i.e., ρd,Qi,S > ρu,Qi,S . In fact, the respective average of down correlations is 0.584

for September 8, 2008 and 0.858 for November 20, 2008. The corresponding average of the up

correlations is significantly smaller: 0.411 and 0.653, respectively. On both days, the correlation

conditional on the market going down is thus considerably lower than the correlation conditional

on the market going up. This feature also indicates that the forward-looking dependence that we

infer is asymmetric and thus non-Gaussian. In Section 5.3, we formally assess the extent by which

the dependence is Gaussian or not. Finally, note that on both days all conditional correlations

are smaller than the global ones. This is not surprising, as this result holds in a theoretical

multivariate normal model for the returns.9
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Figure 4.4: Implied Correlations for the Nine Sectors on September 8, 2008. The left panel
shows the correlation matrix. The right panel shows the implied down correlation ρd,Qi,S versus up correlation

ρu,Qi,S . Also shown is the 45-degree line.

8We also considered alternative definitions for the down and up correlations, where we used the mean instead
of the median RM as the return cutoff. The empirical results were very similar. However, there are important
theoretical and practical advantages to defining the conditional correlations with respect to a specific quantile of
index return. Specifically, using the median, we guarantee that the calculation of up and down correlations is
always based on the same amount of realizations, making it possible to better control the degree of robustness of
the estimates we obtain.

9Assuming multivariate normality, one obtains the following relation between the up (or down) correlation ρu,Qi,S
(ρd,Qi,S ) and the global correlation ρQi,S , namely that (we omit for convenience the reference to the measure Q and the

assets): ρu(= ρd) = ρ

√
1− 2

π

1− 2ρ2

π

and thus |ρu| =|ρd| < |ρ|. This formula is consistent with equation (3) in Campbell,

Forbes, Koedijk, and Kofman (2008). In Appendix E, we provide a detailed derivation.
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Figure 4.5: Implied Correlations for the Nine Sectors on November 20, 2008. The left panel
shows the correlation matrix. The right panel shows the implied down correlation ρd,Qi,S versus up correlation

ρu,Qi,S . Also shown is the 45-degree line.

5 Correlation Risk Premia

In this section, we use the full sample of options on the nine sectors and the index to study risk

correlation risk premia.

5.1 Average Implied Correlations Indices

Since there are many sector pairs (12d(d − 1) = 36), it is convenient to define weighted average

global, down, and up correlation indices. Specifically, for some positive weights πi, we define:

ρQ =

∑
i<j πiπjρ

Q
i,j∑

i<j πiπj
, (5.16)

ρd,Q =

∑
i<j πiπjρ

d,Q
i,j∑

i<j πiπj
, (5.17)

ρu,Q =

∑
i<j πiπjρ

u,Q
i,j∑

i<j πiπj
. (5.18)

There could be several sensible choices for weights πi, such as πi = 1/d (equally-weighted) or

πi = ωi (value-weighted). Here, we focus on the case in which

πi = ωiσi, (5.19)

where σi is the model-free standard deviation estimated from the risk-neutral density. This case

corresponds to “risk-weighted” averaging, and it has been used in the CBOE methodology and

all other existing approaches. (Recall that the average global correlation ρQ with weight as in

(5.19) can be computed from the marginal distributions and the distribution of the weighted sum

without our BRA technique.) Thus, focusing on this case allows for direct comparison with the
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alternative approaches in the literature. However, the findings that we present in Section 5.2 on

correlation risk premia and its state-dependent features are robust to the choice of weights.

These implied average correlations are computed for each trading day in our sample. The

time series of ρQ is displayed in the first panel of Figure 5.6. In the second panel, we display both

the down and up correlations, ρd,Q and ρu,Q. The down correlations are consistently higher than

the up correlations, which is consistent with the observations made in the previous section based

on two specific dates.
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Figure 5.6: Average Implied Correlations. The top panel shows the average implied global correlation
ρQ. Bottom panel shows the average implied down (blue) and up (green) correlations ρd,Q and ρu,Q. The
pink vertical lines indicate the period corresponding to the financial crisis (August 1, 2007 to July 1, 2008).
The green vertical lines show two selective days: September 8, 2008 and November 20, 2008.

We also observe from Figure 5.7 that that all correlations dropped significantly during the

second and third quarter of 2008, which seems surprising, as this period fell in the midst of

the financial crisis. To explain this feature and to put it in proper perspective, we first observe

from Figure 5.7 that on a longer time horizon significant variations in the levels of correlations

are not unusual and that the fall in correlations that we observe during 2008 is not a unique
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Figure 5.7: Average Realized and Implied Correlation. The realized correlation (red line) is shown
for a longer period (starting from January 1999), while the implied correlation (blue line) is shown for a
shorter period (starting from April 2007) and as a 1-month moving average.

event. For example, between January 1999 and October 2000, realized correlations (red curve)

dropped from 60 percent to 15 percent to reach two years later the unprecedented level of nearly

80 percent. Next, we aim at explaining the considerable drop in correlations between March

2008 and September 2008. To do so, we split the time period August 2007 - July 2009 into

three subperiods: Period I covers the time period until March 2008 (the bailout of Bear Sterns),

Period II runs from March 2008 until September 2008 (the failure of Lehman Brothers), and

Period III is from September 2008 until July 2009.

We start by recalling that from July 2006 onwards residential home prices started to fall, a

process that soon affected the financial services industry, which was exposed to subprime mort-

gages. By August 2007, banks had stopped lending to each other because they were afraid of being

caught with toxic debt. Meanwhile, bank stocks had fallen in value and their implied volatility

had increased (as confirmed by the pattern that we observe from the blue curves in the second

resp. third panels of Figure 5.8 during Period I). Although there was some fear that the problems

within the banking sector would affect the global economy (by August 2007, correlations had also

increased considerably, as confirmed by the pattern observed from the red curve in Figure 5.7),

there was yet no global panic. Indeed, during this pre-crisis period no market crash occurred

and market implied volatility remained fairly stable (as can be seen in the pattern observed from

the black curves in the second and third panel of Figure 5.8 during Period I), perhaps due to a

widespread belief that by lowering interest rates the Federal Reserve could restore liquidity and

enhance confidence.

In March 2008, however, Bear Stearns became the first of several financial institutions to be

bailed out by the U.S. government. The rescue of Bear Stearns created a climate in which it was

assumed that the government would rescue other, larger financial institutions, and hence that

spill-over to other sectors (i.e., occurrence of a worldwide crisis) would be limited. Accordingly,

after the rescue of Bear Stearns, a new period started in that the financial market settled down,

even as conditions in the mortgage market grew worse; correlations and volatilities temporarily

19



2008 2009
0

0.2

0.4

0.6

0.8

1

2008 2009
0

0.2

0.4

0.6

0.8

1

1.2

1.4

fin

spx

2008 2009
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.8: Average Implied Correlation, Cumulative Returns, and ATM Implied Volatilities.
This figure focuses on the period of the financial crisis (August 1, 2007 to July 1, 2009). The red solid lines
show the dates that separate Period I, Period II, and Period III of the financial crisis (March 17, 2008, and
September 15, 2008). The black dashed lines indicate several extreme trading days (July 14, 2008, October
9, 2008, November 20, 2008, and January 20, 2009). The second and third panels show the financial sector
(blue line) and the S&P 500 index (black line).

decreased returning to pre-crisis levels (second and third panel of Figure 5.8 during Period II).

On September 7, Fannie Mae and Freddie Mac were declared insolvent. The insolvency of Fannie

and Freddie reignited fear across the financial markets. During the succeeding week, Lehman

Brothers failed to raise new financing to replace short-term funds that were not being rolled over.

Lehman, which was not bailed out by the government, filed for bankruptcy on September 15, and

investors panicked. Liquidity for private firms even those previously thought to be financially

strong dried up, putting many in jeopardy of failing. Now, uncertain whether any investment

was safe, investors wanted cash or government securities. A new crisis period started: during the

last quarter of 2008, markets fell worldwide, volatilities and correlation peaked and remained at

high levels afterwards (as confirmed by the patterns displayed by the curves in all three panels of
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Figure 5.8 during Period III).

5.2 Down and Up Correlation Risk Premia

We use the average correlation indices defined in the previous section to study down and up

correlation risk premia. Formally, we define the global, down, and up correlation premium as

θ = ρP − ρQ, (5.20)

θd = ρd,P − ρd,Q, (5.21)

θu = ρu,P − ρu,Q, (5.22)

in which ρP, ρd,P and ρu,P are the real-world counterparts to the risk-neutral correlations that we

introduced in (5.16)-(5.18).

In the first panel of Figure 5.9, we display the average implied correlation ρQ (the blue line)

and the average realized correlation ρP (the red line), across time. We observe that the correlation

risk premium θ, which appears as the difference between the blue and the red curve, is small and

mostly negative. On average, it is equal to -0.015 across our sample period (Table 5.3). This is

generally with findings in the literature regarding the correlation risk premium.

The second and third panels of Figure 5.9 and Table 5.3 provide our novel contributions to the

literature on correlation premium. These panels visually demonstrate that the average realized up

(down) correlations are systematically higher (lower) than their implied counterparts. Specifically,

we observe from Table 5.3 that the up correlation risk premium θu is significant in magnitude

and positive on average (0.157 in Table 5.3). In contrast, the down correlation risk premium

θd is significant in magnitude but negative on average (-0.118 in Table 5.3). This observation

allows us to conclude that the negative global correlation premium θ that we observe comes from

the dependence behavior in the left tail, i.e., from down correlation coefficients, as the implied

down correlations (under the risk-neutral probability measure) are much larger than the realized

ones (under the real-world probability measure). This conclusion is consistent with the economic

intuition that the correlation premium compensates the loss of diversification in times of crisis,

i.e., when the market falls. As far as we know, this is the first time that a proposed methodology

has been able to estimate conditional correlations and confirms this common belief, which is

discussed extensively in the literature on the correlation risk premium.

Nobs Under P Under Q RP t-stat

Global 2418 0.709 0.725 -0.015 -1.9
Down 2418 0.547 0.665 -0.118 -7.8

Up 2418 0.479 0.322 0.157 10.7

Table 5.3: Correlation Risk Premium. The table reports statistics for the risk premia (RP) θ, θd

and θu computed for the average global, down, and up correlations. The last column shows Newey-West
t-statistics computed with 63 lags.
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Figure 5.9: Implied and Realized Correlations. Implied correlations (blue) are computed from
option inferred dependences; realized correlations (red) are computed from sector index returns. The
corresponding means of the two series are shown with the horizontal dashed lines. The pink vertical lines
indicate the period corresponding to the financial crisis (August 1, 2007 to July 1, 2008). The green vertical
lines show two selective days: September 8, 2008 and November 20, 2008.

From Table 5.3, we also confirm that on average the up correlations are lower than the down

correlations under both probability measures. This asymmetry is a strong indication that the

dependence may not be Gaussian. This point is further explored in the next section.

5.3 Dependence or Marginal Distributions?

The down correlation coefficients that we compute are consistently larger than the up correlation

coefficients (see e.g., the second panel of Figure 5.6 and Table 5.3). This feature does not comply

with a multivariate normal (MVN) distribution for the asset returns, as in this case symmetry

dictates that up and down correlations match with each other. Since correlation coefficients

are affected jointly by the margins and by the dependence, the differences that we observe may
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be caused either by the deviation from normality of the margins or by the deviation from the

Gaussian copula. In this section, we investigate this issue in more detail.

Our starting point is the output empirical multivariate distribution obtained using our model-

free algorithm, consistent with all available option prices on the nine sectors and on the S&P 500

index. This case is denoted by EE to refer to the situation in which we use both the information

on the empirical copula and on empirical margins. We denote by GG the case of Gaussian

margins and Gaussian copula (i.e., a MVN distribution). Specifically, the standard deviations

from the Gaussian margins comply with those of the empirical margins, and the Gaussian copula

is calibrated to a constant correlation matrix in such a way that the model preserves the average

pairwise correlation among the nine sectors. For both cases, we then compute the average pairwise

global correlations (5.16), the down correlations (5.17), and the up correlations (5.18). We display

them as a time series in the different panels of Figure 5.10: the black line corresponds to the case

of EE and the blue line corresponds to GG (MVN distribution).
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Figure 5.10: Implied Correlations. Average implied global, down, and up correlations are computed
for the four cases (GG, EG, GE, EE), where the first letter denotes the type of margins (Gaussian or
Empirical) and the second letter denotes the type of the copula (Gaussian or Empirical). Statistics are
plotted as 1-month moving averages.

By construction, the average pairwise global correlations (5.16) match for EE and GG cases
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GG EG GE EE

Global 0.725 0.695 0.692 0.725
Down 0.483 0.515 0.594 0.665

Up 0.483 0.475 0.323 0.322

Table 5.4: Implied Correlations. Average implied global, down, and up correlations are computed
for the four cases (GG, EG, GE, EE), where the first letter denotes the type of margins (Gaussian or
Empirical) and the second letter denotes the type of the copula (Gaussian or Empirical).

(first panel). However, it is clear that the average pairwise down (up) correlation from the model-

free distribution (EE) is consistently larger (smaller) over time than the one from the case GG

of the MVN fitted distribution as seen in the second (third) panel. This observation is also clear

from the first and last columns of Table 5.4, in which we report the average of each quantity over

the full sample.

In a next step we investigate the contributions of the marginal distributions and of the de-

pendence to the differences that we observe between the average up and down correlations. To

this end, we disentangle the information from the margin distribution and the dependence infor-

mation (copula).10 We then implement two experiments. In the first, the nine sectors returns

are modeled with normal margins and the dependence is the empirical copula that comes as the

algorithm’s output. We denote this case by GE (misspecified margins and correct dependence).

The second experiment consists in taking the algorithm’s empirical margins but using a Gaussian

copula as the dependence structure. We denote this case by EG (correct margins and misspecified

dependence). The first experiment is displayed with a red line and the second with a green line

in all three panels of Figure 5.10. On the one hand, the green lines follow closely the blue lines,

which represent up correlation and down correlation obtained using the MVN fitted distribution

(in both the second and the third panels). On the other hand, the red lines are much closer to the

empirical results (black line). We thus conclude that the difference between the up correlation

and down correlation coefficients is driven by the specificity of the empirical copula under the

risk-neutral probability, and not by the potential asymmetry or fat tails of the margins. This

conclusion is reinforced by comparing the average down and up correlations in the second and

third columns of Table 5.4.

Finally, we formally test whether the option inferred dependence can be seen as Gaussian,

i.e., consistent with the dependence of a multivariate normal distribution. The classical tests in

this regard are Mardia’s tests of multinormality and variants thereof. For general multivariate

data, Mardia (1970) constructed two statistics for measuring multivariate skewness and kurtosis,

which can be used to test the hypothesis of normality (Mardia (1974), Mardia (1975) and Mardia,

Kent, and Bibby (1980)). Usually, the test for whether skewness (MS) and kurtosis (MK) are

consistent with a Gaussian model are performed separately; however, there also exist so-called

omnibus tests that assess them simultaneously. In this paper, we perform these two tests on the

normalized dependence defined as in the previous subsection. That is, we use option inferred

10Any joint distribution can be decomposed into the information on the margins and the information on the
copula from Sklar (1959)’s theorem.
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dependence with attached normal margins and assess whether multivariate normality holds. The

two tests are performed separately on each trading day in the sample. The results are shown in

Table 5.5. Both tests provide strong evidence that the risk-neutral dependence among assets is

not of a Gaussian nature, although the evidence for non-zero skewness is mostly pronounced. In

the next section, we provide further evidence of non-Gaussian dependence in that it is shown that

correlations in decreasing markets (i.e., down correlations) tend to be higher than in increasing

markets (i.e., up correlations), a feature that does not comply with Gaussian dependence.

Nobs Mean p > 0.01 p > 0.05 p > 0.10

MS 2230 0.0010 0.0067 0.0045 0.0027
MK 2230 0.1343 0.3946 0.3148 0.2655

Table 5.5: Test for Gaussian Dependence. The table reports the results of two multinormality tests,
MS and MK, which were run for all trading days. Shown are mean p-values and the fraction of the days
when p-value exceeds threshold of 0.01, 0.05, and 0.10 (that is, when the null hypothesis of the Gaussian
dependence is not rejected).

6 Conclusions

We propose a novel methodology to estimate the risk-neutral dependence among assets in a

manner that is consistent with option prices on the index and its components, without adding

model assumptions. We obtain the full dependence among assets rather than merely, not just an

average correlation coefficient (such as the CBOE implied correlation index). To do so, we use

all the information available rather than merely relying upon ATM volatilities or variances of the

components and the index.

We have described one application of our methodology, namely to deriving the correlation risk

premia conditional on market conditions (e.g., down or up markets). This empirical application

already demonstrates how the methodology can explore the risk-neutral dependence in a way that

previous researchers have been unable to do without making specific model assumptions.

We anticipate that numerous additional applications of the methodology will emerge. Our

method could provide a new way to revisit the phenomenon described in Kelly, Lustig, and

Van Nieuwerburgh (2016). It could also make it possible to price a multivariate derivative on

functions of the sector return in a way that is consistent with both index options and individual

options without introducing arbitrage. In addition, our method makes it possible to detect ar-

bitrage when no dependence structure is compatible with the prices of options on the index and

the prices of options on its components.

Finally, note that it is typically difficult to know whether comovements in the market are

due to simultaneous changes in the volatility (changes in marginal distributions) or to changes in

the dependence among assets. Our methodology, however, allows us to extract the dependence

structure and disentangle the effects of marginal distribution and dependence. Moreover, it can
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also be useful to better measure the respective magnitudes of the variance risk and correlation

risk premia.
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A CBOE Implied Correlation Index

In this appendix, we discuss in greater detail the basic features and limitations of the CBOE

implied correlation index and compare it with our approach.

A.1 CBOE index is not a genuine correlation

An important limitation of the CBOE implied correlation index is that its output value ρcboe

may not always be interpreted as an average pairwise correlation coefficient. For instance, it has

already been observed that ρcboe may take a value that is strictly larger than 1. To understand the

reasons for this issue, recall from Section 2 that the CBOE correlation index builds on equation

(2.3), which is only correct when log(S) =
∑

i ωi log(Xi), i.e., it is in principle required that the

index S is a geometric average of its components. If S denotes a constantly rebalanced portfolio

of the assets Xi with weights ωi, one gets such an equality up to a constant term. The CBOE

implied correlation index is thus an average correlation in a Black-Scholes framework in which

the index S denotes the portfolio obtained by constantly rebalancing a weighted portfolio of the

components Xi. Clearly, this theoretical requirement does not readily hold in real markets, which

prevents ρcboe from being interpreted as a genuine average pairwise correlation. Moreover, there is

an additional issue of a more practical nature that hinders such interpretation. In the calculation

of ρcboe, one does not consider in equation (2.4) all 500 stocks of the index when computing the

weighted sums, but only a subset thereof. Specifically, the 50 biggest stocks in terms of market

capitalization are considered; however, since these stocks tend to have lower volatility, the value of

ρcboe tends to be overestimated. In contrast, our methodology is model-free and yields a complete

dependence structure that is inherently compatible with all option prices observed.

A.2 How wrong can the CBOE index be?

A question arises concerning the impact on the computed CBOE implied correlation index when

one deviates from the theoretically required assumptions. In this regard, the mere fact that the

index is an arithmetic average and not a geometric one is not a major concern. Indeed, if asset

prices are lognormally distributed with a Gaussian dependence that is homogeneous (i.e., for all

pairwise correlations ρ̃ij among the assets’ logreturns it holds that ρ̃ij = ρ), then the value of ρcboe

still corresponds closely to the value of the constant pairwise correlation ρ. However, under some

alternative distributional assumptions regarding the asset prices, ρcboe may fall short in depicting

the average correlation among the assets’ logreturns.

Specifically, in a regime switching market model, ρcboe might become negative even when assets

are positively correlated. To show this, define the following lognormal variables:

Y1 = 100er−
v21
2
+v1W1 , Y2 = 100er−

v22
2
+v2W2 , and Z = 100er−

σ2Z
2

+σZWZ ,

where W1, W2, and WZ are standard normally distributed variables in which WZ is independent
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of W1 and W2, and W1 and W2 have correlation λ12 (under Q). Define a regime-switching model

for the assets X1 and X2 by

X1 = (1− I)Y1 + IZ , X2 = (1− I)Y2 + IZ,

in which I is the variable indicating the regime. Thus, when I = 1, the two assets coincide

(extreme regime) and we assume that this occurs when Z is small enough, i.e., I = 1Z<zq in

which zq is the Value-at-Risk at level q of Z. Furthermore, define the index S as the arithmetic

average of the two assets, i.e., S = X1
2 + X2

2 . We then proceed as follows: First, we obtain, by

Monte Carlo simulations, prices for ATM calls on the index S and on the individual stocks Xi

for stocks behaving as in the above mixture model. We then estimate the corresponding implied

volatilities σi and σS and compute the CBOE implied correlation index ρcboe from the implied

volatilities (using equation (2.4)). In Figure A.11 we display the true correlation corr(X1, X2)

(green line), obtained by Monte Carlo simulations, ρcboe (red line) as a function of q.
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Figure A.11: This figure displays the CBOE implied correlation ρcboe, the Pearson correlation between
the returns in a regime switching model, i.e., corr(X1, X2), and the Pearson correlation after having run
the BRA presented in Section 3): first when correct margins and next when margins are modelled with
lognormal distributions with log-mean (r− v2i /2) and log-variance v2i . These quantities are plotted against
q, which is the probability that I = 1. The parameter values used are v1 = 0.15 v2 = 0.25, λ12 = 0.2,
r = 2%, ω1 = ω2 = 1/2 and σZ = 0.4.

We observe that the CBOE implied correlation index is unable to measure the true correlation

between (the logs of) X1 and X2 (i.e., the green line does not match the red line). To better

understand this feature, we have also run our algorithm (presented in Section 3) to infer the

dependence, and have computed the correlation between the logreturns when we use the true

marginal distributions of X1, X2, and S or when we assume that X1, X2, and the index S are all

lognormally distributed (with log mean r − σ2i /2 and log variance σ2i for i = 1 and i = 2). It is

clear from Figure A.11 that the inferred correlation coefficient, which appears as the dashed black

line, is now roughly equal to the true Pearson correlation (green line), whereas the blue dashed line

roughly matches the CBOE. This observation shows that the CBOE implied correlation may fail
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to provide a good estimate of the true Person correlation when deviating away from a lognormal

model.
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Figure A.12: CBOE and Average Implied Correlations. Top panel: CBOE implied correlations.
Bottom panel: average Global implied correlation ρQ and CBOE constant maturity (1-year) correlation.
The pink vertical lines indicate the period corresponding to the financial crisis (August 1st, 2007 to July
1st, 2008). The green vertical lines show two selective days: September 8, 2008 and November 20, 2008.

Finally, we assess how important deviations from theoretical requirements are in practice.

After all, the mixture model outlined above does not necessarily comply with real option markets

and the question remains as to how much the CBOE correlations really differ from the ones

that we compute using our approach. To ease the comparison between the CBOE index and

our approach, we display the various CBOE correlation indices in the first panel of Figure A.12

(they overlap as there have been regular changes in the manner in which this index is calculated).

In the second panel, we display the CBOE constant maturity (1-year) correlation index and

our proposed average implied correlation index (1-month). We observe that these two indices

behave in a similar manner, but that our computed correlation tends to be larger than the CBOE

index over time. This phenomenon is natural, as the CBOE implied correlation measures the

average pairwise correlation among 500 assets, whereas our index measures the average pairwise

correlation among nine sectors. By aggregating 500 variables into nine sectors, a lot of the

idiosyncratic risk disappears and the correlation increases.11 All in all, we conclude that the

11This effect is mostly pronounced in a fully homogeneous market in which all correlations ρij among stock
returns Xi and Xj are equal, i.e., ρij = ρ. In a Gaussian framework, homogeneity is consistent with a stochastic
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CBOE implied correlation index provides a reasonable proxy for global average correlation in real

markets. However, at times deviations can be important (particularly in stress scenarios), and

our methodology is able to assess the full dependence, i.e., a joint distribution, whereas the CBOE

implied correlation index merely yields a single number. This feature is further discussed in the

following section.

A.3 CBOE index is a number - our method yields a multivariate distribution

The CBOE implied correlation index yields only a global Pearson correlation (a single number),

whereas our methodology measures the entire dependence (a multivariate distribution). As a

result, the CBOE implied correlation index cannot capture tail dependence (i.e., higher correlation

in tails of the distribution), even though there is evidence of “local” correlation increasing in times

of crisis. Correlation is then state-dependent: it may depend, for instance, on the index returns

but the methodology adopted by the CBOE cannot be adjusted to find such evidence based on

option prices. By contrast, our methodology is able to assess these state-dependent features and

to estimate conditional correlations.

There are additional limitations of the CBOE implied correlation index. For instance, by

definition, the CBOE index only uses the information from ATM option prices: any other implied

volatility could have been used instead. Our approach is model-free and integrates all the option

prices available.

B Toy Example of the Algorithm Used to Infer Dependence

For ease of presentation, we illustrate the algorithm with an oversimplified example. Assume that

d = 3; we use a very small discretization step, n = 5, so that X1, X2, X3, and −S all take five

model for asset returns Xi that are all driven in the same manner by a systematic component (in addition to their
idiosyncratic component). Correlating sector indices then means that we correlate two sums, which, due to the
effect of the law of large numbers, tend to become nearly linear functions of the systematic component, i.e., when
the number of assets within the sectors grows, the correlation between the corresponding sector indices converges to
1. Next, we allow for the feature that for assets belonging to the same sector their pairwise correlation, say ρintra,
differs from the correlation, say ρintra, that exists among assets belonging to different sectors. This correlation
structure is compatible with a stochastic model in which normalized asset returns Xi,j belonging to the jth sector
(j = 1, . . . , 9) write as Xi,j = aM + bMj +

√
1− a2 − b2εij , in which M is a systematic component, Mj is a sector

specific component, and the εij are idiosyncratic components (independent standard normals). In this instance,
correlations among sector indices are still higher than pairwise asset correlations, but the effect will be smaller than
in the case of full homogeneity. For instance, when ρintra = 0.8 and ρbetw = 0.6, the average correlation among
the nine sector indices is approximately equal to 0.75, whereas the average pairwise correlation among the assets
is only equal to 0.62, which conforms well with the pattern observed in the second panel of Figure A.12; see Cooke
and Kousky (2010) for further discussion.
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values with probability 1/5, which we report in a matrix as in (3.8):

M =


1 1 0 −19

2 2 3 −13

3 3 4 −10

5 5 5 −8

6 7 9 −6

 , (B.23)

where V := var(X1 +X2 +X3 − S) = 126. In what follows we denote X4 = −S.

The objective is to find a rearrangement of the values inside each column such that the row

sums of the four columns of M are all equal to zero. This is equivalent to rearranging the columns

of the matrix M such that var(X1 +X2 +X3 +X4) = 0. Note that we allow for rearrangements

within columns, as doing so affects the dependence among the Xj , j = 1, 2, 3, but not their

marginal distributions. By contrast, swapping values among columns will affect the marginal

distributions and is not allowed. We illustrate the method on the matrix (B.23).

Step 1: Rearranging X1,

X2 +X3 +X4 =


−18

−8

−3

2

10

 M(1) =


6 1 0 −19

5 2 3 −13

3 3 4 −10

2 5 5 −8

1 7 9 −6

 V = 58.

Step 2: Rearranging X2,

X1 +X3 +X4 =


−13

−5

−3

−1

4

 M(2) =


6 7 0 −19

5 5 3 −13

3 3 4 −10

2 2 5 −8

1 1 9 −6

 V = 12.4.

Step 3: Rearranging X3,

X1 +X2 +X4 =


−6

−3

−6

−4

−4

 M(3) =


6 7 9 −19

5 5 0 −13

3 3 5 −10

2 2 3 −8

1 1 4 −6

 V = 4.

In this case, the order of the fourth and fifth rows for X3 is arbitrary and the rearrangement is

not unique. But both lead to a new variance equal to 4.
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Step 4: Rearranging X4,

X1 +X2 +X3 =


22

10

11

7

6

 M(4) =


6 7 9 −19

5 5 0 −10

3 3 5 −13

2 2 3 −8

1 1 4 −6

 V = 2.8.

Step 5: Rearranging the block [X1 X2]; it is possible to keep the variance unchanged or to

switch the first and second row. Neither results in a change in variance. For instance, we switch

the two rows to illustrate the algorithm:

X1 +X2 =


13

10

6

4

2

 X3 +X4 =


−10

−10

−8

−5

−2

 M(5) =


5 5 9 −19

6 7 0 −10

3 3 5 −13

2 2 4 −8

1 1 3 −6

 V = 2.8.

Step 6: Rearranging the block [X1 X3] may not help either, as it is also antimonotonic:

X1 +X3 =


14

6

8

6

4

 X2 +X4 =


−14

−3

−10

−6

−5

 M(6) =


5 5 9 −19

6 7 0 −10

3 3 5 −13

2 2 4 −8

1 1 3 −6

 V = 2.8.

Step 7: Rearranging the block [X1 X4], we need to interchange the second, fourth, and fifth

rows:

X1 +X4 =


−14

−4

−10

−6

−5

 X2 +X3 =


14

7

8

6

4

 M(7) =


5 5 9 −19

1 7 0 −6

3 3 5 −13

6 2 4 −10

2 1 3 −8

 V = 2.

Step 8-11: Now we go back to Step 1 and look again at the respective columns X1 (which

is already antimonotonic), X2 (in matrix M(11) which decreases the variance to 1.6), X3 (which

is already antimonotonic in M(11)), and X4 (which is already antimonotonic in M(11)). After
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rearranging these four columns sequentially, we obtain

M(11) =


5 5 9 −19

1 7 0 −6

3 3 5 −13

6 1 4 −10

2 2 3 −8

 V = 1.6.

Step 12: Next we apply again the rearrangement on block [X1 X2]. We switch rows 2 and 3

and find that the variance is equal to 0. The algorithm stops. The final matrix is

M(12) =


5 5 9 −19

3 3 0 −6

1 7 5 −13

6 1 4 −10

2 2 3 −8

 V = 0.

The algorithm has converged, and all row sums are equal to zero.

C Algorithm to Infer Dependence

The method we propose for inferring dependence is inspired by the so-called Rearrangement

Algorithm (RA) of Puccetti and Rüschendorf (2012) and of Embrechts, Puccetti, and Rüschendorf

(2013), which was originally introduced to deal with the assessment of model risk and which

was adjusted by Bernard, Bondarenko, and Vanduffel (2018) to make it suitable for inferring

dependence, and labeled as Block Rearrangement Algorithm (BRA).

The objective is to find a rearrangement of the first d columns such that the row sums of the

d+1 columns of M are all equal to zero. In other words, the opposite of the last column is the sum

of the previous ones, i.e., S =
∑d

j=1Xj . Denote this last column by Xd+1 = −S. This procedure

is equivalent to finding a rearrangement of the matrix M such that X1 + · · ·+Xd+1 is identically

equal to zero, and thus such that var(X1 + · · ·+Xd+1) = 0. We allow for rearrangements within

columns, as doing so affects the dependence among Xj , j = 1, . . . , d, but not their respective

marginal distributions. By contrast, swapping values among columns will affect the marginal

distributions and is not allowed. Clearly, in order for X1 + · · · + Xd+1 to have the smallest

possible variance, it must hold that for all ` = 1, . . . , d + 1, X` is as negatively correlated as

possible with
∑d+1

j=1,j 6=`Xj (Puccetti and Rüschendorf 2012, Theorem 2.1), i.e., is anti-monotonic.

This observation lies at the core of this rearrangement method.

In fact, it must actually hold that for any decomposition of {1, . . . , d + 1} = I1 ∪ I2 into two

disjoint sets I1 and I2, the sums S1 :=
∑

k∈I1 Xj and S2 :=
∑

k∈I2 Xj are anti-monotonic and not

only for sets of the form I1 = {j} and I2 = {1, . . . , d = 1}\I1. This observation makes it possible

to generalize the standard RA by rearranging “blocks of columns” instead of one column at a
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time: The columns in the first set I1 are stacked into a matrix (block) X1 and one rearranges its

rows (i.e., one swaps entire rows) such that the row sums of X1 (reflecting S1) are in increasing

order. As for the matrix X2 that is formed by stacking the remaining columns, the rows are

rearranged such that the row sums (reflecting S2) are in decreasing order.

Algorithm for inferring dependence

1. Select a random sample of nsim possible partitions of the columns {1, . . . , d + 1} into two

non-empty subsets {I1, I2}. When d 6 9, we take nsim = 2d − 1 so that all non-trivial

partitions are considered.

2. For each of the nsim partitions, create the matrices (blocks) X1 and X2 with corresponding

row sums S1 and S2 and rearrange rows of X2 so that S2 is anti-monotonic to S1.

3. If there is no improvement in var
(∑d+1

j=1 Xj

)
, output the current matrix M; otherwise,

return to step 1.

At each step of this algorithm, we ensure that the variance decreases or remains the same:

the columns, say Xj before rearranging and X̃j after rearranging, verify12

var

d+1∑
j=1

Xj

 > var

d+1∑
j=1

X̃j

 .

Each time, we randomize each of the d+1 columns of M given in (3.8), and next we apply the

algorithm. For each run k of the algorithm we obtain a candidate dependence among the d first

components of the index. Note that the vectors [X
(k)
1 , . . . , X

(k)
d ] differ only with respect to their

interdependence. As for each run k, we randomize the initial matrix (i.e., we randomize the initial

condition for the algorithm), and it appears reasonable to assert that the procedure provides a

way in which to describe the set of all possible dependence structures (copulas) that are consistent

with the given information. Nevertheless, we obtain that application of the procedure leads to

“a very thin set” of dependence structures, which display (nearly) maximum entropy (Bernard,

Bondarenko, and Vanduffel (2018)).

D Data

D.1 CBOE Options

We use CBOE options on nine Select Sector SPDR ETFs. These options are American-style,

and their underlying assets (SPDR ETFs) pay quarterly dividends. The option contract size is

100 shares of the corresponding ETF. The minimum price movement is 0.05. The strikes are

multiples of $1. Sector options all expire on the same day. On any given trading day, we focus

on the shortest available maturity with at least 30 days remaining.

12Indeed, var
(∑d+1

k=1Xk
)

= var
(
Xj +

∑
k 6=j Xk

)
, and a necessary condition for var

(∑d+1
k=1Xk

)
to become

minimum is that each Xj is anti-monotonic with
∑
k 6=j Xk.
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D.2 Dataset Construction

1. We use closing quotes to compute mid-point prices. In the dataset, we match all puts and

calls by trading date t, maturity T , and strike K. For each pair (t, T ), we drop very low (high)

strikes with zero bids. We approximate the risk-free rate r over [t, T ] by the rate of Treasury bills.

3. Because sector options are American style, their prices PAt (K) and CAt (K) could be slightly

higher than the prices of the corresponding European options Pt(K) and Ct(K). The difference,

however, is small for the short maturities, on which we focus. This is particularly true for OTM

an ATM options.

To infer the prices of European options Pt(K) and Ct(K) on a given underlying Xt and

maturity τ = T − t, we proceed as follows: First, we discard all ITM options. That is, we use put

prices for K/Zt 6 1.00 and call prices for K/Zt > 1.00, where Zt := Xte
(r−δ)τ is the forward price.

Prices of OTM and ATM options are both more reliable and less affected by the early exercise

feature. Second, we correct American option prices PAt (K) and CAt (K) for the value of the early

exercise feature by using Barone-Adesi and Whaley (1987) approximation. Third, we compute the

prices of ITM options through the put-call parity relationship: Ct(K)− Pt(K) = (Zt −K)e−rτ .

4. We check option prices for violations of the no-arbitrage restrictions. To preclude arbitrage

opportunities, call and put prices must be monotonic and convex functions of the strike. In

particular, the call pricing function Ct(K) must satisfy

(a) Ct(K) > (Ft −K)+ e−rτ , (b) − e−rτ 6 C ′t(K) 6 0, (c) C ′′t (K) > 0.

When restrictions (a)-(c) are violated, we enforce them by running the so-called Constrained

Convex Regression (CCR) introduced in Bondarenko (2003). Intuitively, CCR searches for the

smallest (in the sense of least squares) perturbation of option prices that restores the no-arbitrage

restrictions. The procedure can also identify possible recording errors or typos.

5. For each pair (t, T ), we estimate RND using the method of Positive Convolution Approxi-

mation (PCA) developed in Bondarenko (2003). The method allows one to infer the RND ft(x)

and RNCD Ft(x) through the relationships in (3.6) and (3.7). The method addresses directly the

important limitations of option data that (a) options are only traded for a discrete set of strikes,

as opposed to a continuum of strikes, (b) very low and very high strikes are unavailable, and (c)

option prices are recorded with substantial measurement errors, which arise from non-synchronous

trading, price discreteness, and the bid-ask bounce. The PCA method is fully nonparametric, al-

ways produces arbitrage-free estimators, and controls against overfitting while allowing for small

samples.
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E Up and Down Correlations for a Multivariate Normal Model

For convenience, we omit reference to the measure Q. When the vector (R1, R2, ...., Rd) is multi-

variate normally distributed, each pair (Ri, RS) (i = 1, ..., d) will be bivariate normally distributed.

Define the conditional beta βu,pi,S for the i−th asset as

βu,pi,S :=
cov(Ri, RS | RS > RpS)

var(RS | RS > RpS)
,

in which RpS denotes the p-quantile of the sector return RS . In particular, when p = 0.5, we

obtain that RpS reduces to RMS , and when p = 0, we obtain the usual (unconditional) beta of an

asset and simply write βi,S . The following lemma is useful in our analysis.

Lemma E.1 (invariance of beta). For all 0 6 p < 1, it holds that

βu,pi,S = βi,S .

Proof. It is well-known that Ri can be expressed as Ri = E(Ri) + βi(RS −E(RS)) +Ei, in which

Ei is a certain normal random variable with zero mean that is independent of RS . Hence,

βu,pi,S =
cov(βiRS + Ei, RS | RS > RpS)

var(RS | RS > RpS)

= βi
var(RS | RS > RpS) + cov(Ei, RS | RS > RpS)

var(RS | RS > RpS)
= βi,S

where, in the last equality, we have used that Ei is independent of RS .

Next, we use that

ρu,pi,s := βu,pi,s
stdev(RS | RS > RpS)

stdev(Ri | RS > RpS)
= βiS

stdev(RS | RS > RpS)

stdev(Ri | RS > RpS)
.

The expressions for the conditional standard deviations in the latter equation, follow from

direct calculus (see e.g. Furman and Landsman (2006)) and after substitution of the βi,S we

obtain that

ρu,pi,s = ρi,s

√
1 +

φ(zp)
1−p (zp − φ(zp)

1−p )√
1 +

φ(zp)
1−p (zp − φ(zp)

1−p ρ
2
i,S)

, (E.24)

in which Φ(·) denotes the cdf of a standard normal random variable, φ(·) indicates its density,

and zp is the p-quantile. Because of symmetry, the same expressions are obtained for ρd,pi,S .

Furthermore, it is well known that 1 − Φ(·) is log-concave and thus also that zp <
φ(zp)
1−p .

This can be seen as a direct consequence of a more general result attributed to Prékopa (1973),

who showed that the differentiability and log-concavity of the density implies log-concavity of the

corresponding distribution and survival function. Since a normal density is clearly log-concave,
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its survival function will also be log-concave. Hence, we obtain that, in any case, |ρi,S | < |ρu,pi,S |.
In particular, when p = 0.5 in (E.24), we get that |ρi,S | < |ρui,S | = |ρdi,S | and also that

ρui,S = ρi,S

√
1− 2

π

1− 2
πρ

2
i,S

.
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