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ABSTRACT

We develop a simple, non-parametric approach for estimating the entire distribution of

skill. Our approach avoids the challenge of correctly specifying the distribution, and

allows for a joint analysis of multiple measures–a key requirement for examining skill.

Our results show that more than 85% of the funds are skilled at detecting profitable

trades, but unskilled at overriding capacity constraints. Aggregating both skill dimen-

sions using the value added, we find that around 70% of the funds are able to generate

profits. The average value added after funds have reached their long-term size equals 7.1

mio. per year, which represents two thirds of the optimal value predicted by neoclassical

theory. For all skill measures, the distribution is highly non-normal and reveals a strong

heterogeneity across funds.



I Introduction

Over the past 50 years, the academic literature on mutual funds has largely focused on

mutual fund performance. For instance, Carhart (1997), Elton et al. (1993), and Jensen

(1968) find that the aggregate alpha net of fees and trading costs is negative, while

recent studies further show that the majority of funds deliver negative net alphas (e.g.,

Barras, Scaillet, and Wermers (2010), Harvey and Liu (2018a)). Far less attention has

been devoted to the analysis of mutual fund skill.1 Whereas these two notions are often

used interchangeably, they differ in important ways. Skill is defined from the viewpoint

of funds–it measures their ability to create value through their investment and trading

decisions. Performance is defined from the viewpoint of investors–it measures whether

the value created by the funds, if any, is passed on to them.

In this paper, we develop a novel approach for estimating the cross-sectional distrib-

ution of fund skill. Our approach is non-parametric–it does not impose any parametric

structure on the shape of the distribution. As such, it brings two key advantages for ex-

amining skill. First, it avoids the challenge of correctly specifying the skill distribution.

For one, theory offers little guidance to specify the mean, dispersion, or asymmetry of

skill across funds. Data cannot be used to guide specification either–a simple histogram

of the estimated skill measures is plagued by estimation errors and thus biased.

Second, our approach accommodates the analysis of multiple skill measures. This

joint analysis is key because funds are skilled along several dimensions. In a world with

decreasing returns to scale, Berk and Green (2004; BG hereafter) show that funds can be

skilled (i) at detecting profitable trading ideas, or (ii) at mitigating the negative impact

of capacity constraints. Furthermore, it is natural to aggregate both dimensions to infer

the overall skill level of each fund. This step requires an aggregate skill measure such

as the value added proposed by Berk and van Binsbergen (2015).

In addition to its flexibility, our novel approach is simple, widely applicable, and

supported by econometric theory. It only involves simple manipulations of the fund skill

measures estimated using time-series regressions. It provides a unified framework that

is applicable to all the descriptive statistics of the skill distribution (density, cumulative

function, quantiles, moments (e.g., mean, skewness)). Finally, it rests on solid statistical

foundations that allow us to infer the asymptotic properties of the different estimators.

Our non-parametric approach departs from standard parametric/Bayesian approaches

that require a full parametric specification of the distribution (e.g., Jones and Shanken

1Notable exceptions include Berk and van Binsbergen (2015), Grinblatt and Titman (1989), Pastor,

Stambaugh, and Taylor (2015), and Wermers (2000).
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(2005)). In the context of skill evaluation, these approaches are less appealing because

they are prone to misspecification errors and cannot easily handle multiple skill mea-

sures. While a joint specification across all measures is subject to the curse of dimension-

ality, a separate specification is prone to inconsistencies because the skill measures are

intertwined. Another limitation of these approaches is that they rely on sophisticated,

computer-intensive estimation methods (e.g., Gibbs sampling).

The main challenge in estimating the skill distribution is to control for bias. Given

that the true skill measures are unobservable, we can only use as inputs the estimated

skill measures. This introduces an Error-in-Variable (EIV) bias that is reminiscent of

the well-known EIV bias in the two-pass regression approach (Shanken (1992)). To

address this issue, we derive a closed-form expression of the EIV bias that can be easily

computed and interpreted. In essence, the bias adjustment consists of reducing the large

tail probabilities obtained with the estimated skill measures. We further validate this

procedure through an extensive Monte-Carlo analysis.

Our empirical analysis is based on monthly return data for all actively managed

US equity funds between January 1979 and December 2015. We examine the skill

distribution for the entire population, as well as different groups sorted on investment

styles and fund characteristics. We begin by measuring the two skill dimensions using

the BG model in which the fund gross alpha  depends on its lagged size −1:  =
 − −1 The first skill dimension–the first dollar (fd) alpha –determines the

fund ability to identify profitable trades. The second dimension–the size coefficient

–captures the fund ability to resist capacity constraints. We then aggregate the two

dimensions using the value added which determines the total profits earned by the fund

from exploiting its skill. Our analysis explicitly distinguishes between two measures of

the value added. The first one, defined as  =  [−1]  determines the profits
over the fund lifecycle. The second one, defined as  =  [] [−1]  determines
the steady state profits once the fund reaches its average size.

The ability of funds to detect profitable trades is both widespread and economically

significant. The fd alpha  is positive for 87.5% of the funds and is equal to 3.5% per

year, on average. In other words, most funds are able to detect undervalued stocks and

correct for mispricing caused by noise trading. At the same time, only a handful of funds

have the ability to override capacity constraints. The size coefficient  is positive for

85.9% of the funds and causes an average 1.5% decrease in annual alpha following a one

standard deviation increase in size. Taken together, these fund-level results corrected

for EIV bias provide strong support to the BG model in which investment skills and

capacity constraints represent central features of the mutual fund industry.
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The distributions of the two skill dimensions exhibit several common features. First,

they reveal a substantial heterogeneity across funds. For instance, the volatility of the

size coefficient is as large as its average (1.5%). Therefore, the standard approach of

imposing a constant size coefficient ignores the diverse impact of capacity constraints

across funds. Second, both distributions are highly non-normal with levels of skewness

above 6.0. This implies that a minority of funds exhibit stellar investment skills–

for 10% of the population, the fd alpha is above 7.8% per year. Third, adjusting for

the EIV bias is essential for estimating the two skill distributions and their associated

descriptive statistics. A simple analysis based on the estimated coefficients ̂ and ̂ is

heavily biased–it largely overestimates the probability mass in the tails and completely

fails to capture the asymmetry in skill (i.e., the unadjusted skewness is a mere 0.6).

Our joint analysis shows that the two skill dimensions are positively correlated. For

instance, small cap funds exhibit both higher fd alphas and higher size coefficients than

large cap funds. Similarly, high expense funds are skilled at detecting profitable trades,

but unskilled at mitigating capacity constraints. These results help reconcile previous

studies that interpret high expenses as a signal of either superior or inferior skill (e.g.,

Elton et al. (1993), Pastor, Stambaugh, and Taylor (2017)). They also imply that

examining each dimension separately is not sufficient for determining the overall skill

level. To this end, we need to aggregate both dimensions using the value added.

The analysis of the value added reveals that individual funds earn large profits from

exploiting their skills. On average, the value added  over the fund lifecyle is equal

to 1.9 mio. per year. Once funds reach their average size, the steady-state value added

is even larger as  equals 7.1 mio. per year, on average. Here again, controling

for the EIV bias is essential. For one, the unadjusted proportion of funds with positive

 equals 49.5%, our bias-adjusted estimate is significantly higher at 64.1%. Similar

to the two skill dimensions, the average value added provides a poor summary of the

entire fund population because the distribution is highly volatile, positively skewed and

fat-tailed. This large heterogeneity implies that some funds earn staggering profits, e.g.,

10% of the funds produce a steady state value added  above 25.6 mio. per year.

Comparing the different fund groups, we find that the small cap funds earn larger

profits than large cap funds. Therefore, their superior ability in detecting profitable

trades compensates for their strong exposure to capacity constraints. We also observe

significant differences between groups sorted on expense ratio and turnover–on average,

low expense/turnover funds produce an incremental value added between 4.2 and 6.9

mio. per year. Therefore, these funds achieve better combinations of fd alphas and size

coefficients and are rewarded by investors via larger money inflows.
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Our non-parametric approach can also be used to study the distribution of the

optimal value added ∗ given by
2
4

 This analysis is motivated by the neoclassical BG

model which predicts that in a world where skilled funds are in scarce supply, they are

able to earn the maximum profits ∗ . On average, we find that the value added 

represents only 9.5% of the optimal value ∗  This result may not be surprising because
investors need time to learn about  and  (Pastor and Stambaugh (2012). Therefore,

the size of the funds can be quite far from its optimal value. Past this learning phase,

however, the empirical results are broadly supportive of the BG model–the steady state

value added  represents, on average, 66.8% of the optimal value ∗ 

Finally, we find that the gross alpha, which is widely used in previous work, contains

limited information about skill. Our theoretical analysis shows that the gross alpha is

aligned with the skill measures only if all funds choose specific compensation schemes.

The empirical analysis of fund fees reveals that this is not the case because funds have

a preference for managing a larger asset base. Therefore, the gross alpha becomes less

informative–some funds can have superior skills and yet deliver lower gross alphas as

they trade off lower fees for a larger size. Consistent with this result, we find that the

fund gross alpha is weakly related to the different skill measures.

Our work is related to several strands of the literature. Recent papers use paramet-

ric/Bayesian approaches to infer the entire distribution of fund alphas (e.g., Chen, Cliff,

and Zhao (2017), Jones and Shanken (2005), Harvey and Liu (2018a)) or their sensitiv-

ity to capacity constraints (Harvey and Liu (2018b)). Here, we apply a non-parametric

approach to multiple skill measures. Several studies apply the False Discovery Rate

approach to measure the proportions of funds with negative/positive performance (e.g.,

Avramov, Barras, and Kosowski (2013), Barras, Scaillet, and Wemers (2010), Ferson

and Chen (2018)). This paper estimates the entire skill distribution (density, cumula-

tive function, quantiles, moments) and thus encompasses the analysis of the proportions.

Berk and van Binsbergen (2015) and Pastor, Stambaugh, and Taylor (2015) discuss the

advantages of using the value added and the fd alpha. We build on these papers to esti-

mate mutual fund skill. Finally, several studies provide evidence of capacity constraints

at the aggregate level (e.g., Chen et al. (2004), Pastor, Stambaugh, and Taylor (2015)).

Here, we examine the impact of capacity constraints at the individual fund level.

The remainder of the paper is as follows. Section II presents the different skill

measures and describes our non-parametric approach. Section III describes the mutual

fund data set and provides summary statistics. Section IV contains the empirical analysis

of the different skill measures, and Section V concludes. The appendix contains the

proofs of the different propositions, as well as additional empirical results.
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II The Cross-Sectional Distribution of Skill Measures

A Measuring Fund Skill

A.1 Definition of the Skill Measures

The Two Dimensions of Skill We begin our presentation with the two dimensions of

skill that funds potentiall exhibit, namely (i) their ability to generate profitable trading

ideas, and (ii) their ability to mitigate the impact of capacity constraints. To this end,

we build on the BG model and express the gross alpha of each fund  as a linear function

of its lagged size −1 i.e.,  = − −1 for  = 1  , where  denotes the total
number of funds2

We measure the first skill dimension using the first dollar (fd) alpha  which is

defined as the fund abnormal return when its size equals zero3 This measure captures

the quality of the fund investment ideas because it is not impacted by capacity contraints.

In other words, the fd alpha is a "paper" return that is unencumbered by the drag of

real world implementation (Perold and Salomon (1991)).

We measure the second skill dimension using the size coefficient  which captures

the fund sensitivity to capacity constraints. As discussed by BG,  is larger if the

fund faces high execution costs for trading large orders (e.g., liquidity, price impact).

A distinguishing feature of our specification is that  is fund-specific. This contrasts

with the previous literature which commonly assumes a common coefficient for all funds

(e.g., Chen et al. (2004), Pastor, Stambaugh, and Taylor (2015)). Capturing this

heterogeneity is potentially important because there is a priori no reason why the impact

of capacity constraints should be identical across funds.

To estimate the two skill dimensions, we use the following time-series regression:

 =  − −1 + 0 +  (1)

where  is the fund gross excess return (before fees) over the riskfree rate,  is a

-vector of benchmark excess returns, and  is the error term
4 To capture the het-

erogeneity across funds, we interpret Equation (1) as a random coefficient model in

2This linear specification is used, among others, by Berk and van Binsbergen (2015), Harvey and Liu

(2018b), Pastor, Stambaugh, and Taylor (2015), and Pollet and Wilson (2008). In the appendix, we

consider alternative specifications which leave our results largely unchanged.
3Here, we follow the terminology proposed by Pastor, Stambaugh, and Taylor (2015).
4 In our baseline specification, we also use the four-factor model of Cremers, Petajisto, and Zitzewitz

(2012) to estimate skill. To assess whether the model is correctly specified for mutual funds, we use

the diagostic criterion by Gagliardini, Ossola, and Scaillet (2018). The results confirm that there is no

remaining factor structure in the fund residuals  ( = 1  )
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which all the regression coefficients are random (e.g., Hsiao (2003)). In other words, we

do not treat the coefficients   and  as fixed parameters, but as random realizations

from a continuum of funds. Under this sampling scheme, we can invoke cross-sectional

limits in order to infer the common density function () and () from which the fd

alpha and size coefficient of each fund are drawn.5

The Value Added To aggregate the two skill dimensions, we use the value added

which determines the total profits earned by the fund through its investment and trading

decisions. This measure has a powerful economic interpretation–it is similar to the rent

earned by a monopolist obtained by multiplying the markup price of the good by the

total quantities sold.

Formally, we consider two formulations of the value added. The first one, proposed

by Berk and van Binsbergen (2015), measures the value added during the fund entire

lifecycle (l):

 = plim
→∞

1



X
=1

 · −1 =  [−1] = 1 − 2 (2)

where 1 2 are equal to the time-series averages of the fund size and its squared

value, i.e., 1 = [−1] and 2 = [2−1] In other words,  captures the average
profits across different levels of fund size. The second one corresponds to the steady

state (ss) value added by the fund once it reaches its average (steady state) size 1:

 = plim
→∞

1



X
=1

 · plim
→∞

1



X
=1

−1 =  [] [−1] = 1 − 
2
1 (3)

The difference between the two measures is equal to the covariance between the gross al-

pha and size: − = ( −1) = −(−1) = −(2−21) Therefore,
 is always larger than  as long as the fund is sensitive to capacity constraints

(  0)

As shown in Equations (2)-(3),  and  depend on the two two skill dimensions

 and  We can therefore build on the random coefficient model in Equation (1) to

infer the common density functions () and () from which the two measures of

the valued added are drawn.

5Gagliardini, Ossola, and Scaillet (2016) use a similar sampling scheme to develop testable applica-

tions of the arbitrage pricing theory in a large cross-section of assets.
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A.2 The Relation between Skill and the Gross Alpha

The skill measures presented above differ from the fund gross alpha  which is defined

as the average abnormal return from the following regression:  =  + 0 + 

Whereas the gross alpha is commonly used in the literature, it may provide limited

information about skill because it does not control for fund size.6 Going back to the

analogy with the monopolist, using this measure is akin to measuring the monopolist

rent with the markup price of the goods, regardless of how much quantity is sold.

The exact relation between the gross alpha and the skill measures depends on how

fund size is determined in equilibrium. A natural benchmark is the neoclassical BG

model in which skilled managers maximize profit and rational investors compete for

performance such that the gross alpha equals fees, i.e.,  = . Following the notation

of Berk and van Binsbergen (2015), we write the (benchmark-adjusted) fund total rev-

enue and cost from active management as  =  and  = 
2
 . Using the standard

first order condition, we obtain the optimal size ∗ =

2

 and the optimal value added

∗ = ∗ − ∗ = 
∗
 − 

∗2
 =

2
4

7

A key insight from this model is that fund fees do not change the value added: (i)

if the fund chooses low fees, it receives additional money from investors ( − ∗  0)

which is passively indexed to keep ∗ − ∗ unchanged; (ii) if the fund chooses high fees,
it can sell the index short and invest the proceeds in the fund (∗ −   0) to obtain

∗ − ∗ . However, the choice of fees determine the equilibrium size  and thus the

relations between the skill measures. To see this point, we examine four hypothetical

compensation schemes in which managers set fees based on specific rules.

Scheme I (fd alpha). Funds set fees at  such that they operate at the profit-

mazimizing size ∗  We have  =  =
∗−∗
∗

=


∗
−∗2
∗

÷  Therefore, the gross

alpha captures the fd alpha (first skill dimension).

Scheme II (size coefficient). Funds set fees at   such that they operate at the

squared optimal size ∗2  We have  =   =
∗−∗
∗2

=


∗
−∗2
∗2

= . Therefore, the

gross alpha captures the size coefficient (the second skill dimension).

Scheme III (value added). Funds set fees at  such that the size remains constant

across all funds at ̄. The gross alpha is given by  =  =
∗−∗

̄
=

1
∗
1−1∗21
̄

=

6The gross alpha is examined, among others, by Baks, Metrick, and Wachter (2001), Barras, Scaillet,

and Wermers (2010), Carhart (1997), Grinblatt and Titman (1989), Jensen (1968), Jones and Shanken

(2005), Wermers (2000).
7Our analysis largely builds on that of Berk and van Binsbergen (2015) which already discusses

the relation between the gross alpha and the value added. Our contribution is to include all four skill

measures (fd alpha, size coefficient, value added, gross alpha) and examine their relations under different

compensation schemes.
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̄
2
4
÷ ∗  Therefore, the gross alpha captures the value added.
Scheme IV (no information). Here, funds choose fees  at levels that differ from

 

 and  

8 We have  =  =
∗−∗


=
1

∗
1−1∗21


=
2

4 
 where  (


 ) =

2
4 

 Therefore, the gross alpha is uninformative about skill (i.e.,  6=   6=   6=
). For instance, suppose that fund  is more skilled than fund  on every dimension,

but chooses the same level of fees ( =  = ̄) A comparison based on the gross

alpha fails to capture any skill difference because we have  =  = ̄

Table I summarizes the above analysis and reveals that the four compensation

schemes yield different predictions for fund size and fees. As show in Section IV.D,

we can examine these predictions empirically to shed light on the information content

of the gross alpha. Under Scheme I, we observe a moderate cross-sectional variation

in fees and size as funds choose different fees to reach the fund-specific optimal size

Under Scheme II, the fees must be tiny so that funds grow large and reach the squared

optimal size Under Scheme III, the fund size is the same for all funds. Finally, Scheme

IV predicts a large cross-sectional variation in size because it corrects for the arbitrary

fees set by funds.

Please insert Table I here

B Overview of the Non-Parametric Approach

B.1 General Motivation

In this section, we describe the approach for estimating the cross-sectional distribu-

tion of fund skill. For simplicity, we denote the skill measure by  where  ∈
{   } encompasses all four measures presented above. Our approach is
non-parametric, i.e., it estimates the skill distribution without imposing any structure

on its shape. As such, it provides several key advantages.

First, our approach is immune to misspecification errors This is not the case for

standard Bayesian/parametric approaches because they require to specify the shape of

the distribution. In the context of skill, choosing the correct specification is challenging.

For one, theory can be used to anchor the distribution of net alpha around zero, but

offers no such guidance for skill. Whereas we can gain flexibility by specifying a mixture

of normals (e.g., Chen, Cliff, and Zhao (2017), Harvey and Liu (2018a)), determining

the number of mixture components is technically difficult.9

8For instance, funds may choose fees to mitigate moral hazard (Habib and Johnson (2016)). In this

case, fees are set at the minimum level such that skilled managers exert effort. As fees are driven by the

manager-specific probability of shirking, they may be quite different from  

 and  

9Due to their non-regularity, there are many technical challenges concerning inference problems on
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Second, it allows for a joint analysis of all four skill measures, which is extremely

challenging with Bayesian/parametric approaches. On the one hand, specifying each skill

distribution separately is likely to generate inconsistencies because the skill measures are

theoretically related as per Equations (1)-(3) On the other, jointly specifying all skill

distributions involves the daunting task of estimating a multivariate distribution whose

marginals are potentially mixtures of distributions.

Third, the implementation of the non-parametric approach is simple and fast. Intu-

itively, it is akin to computing an histogram using as inputs the estimated skill measure

̂ of each fund In contrast, Bayesian/parametric approaches require sophisticated and

computer-intensive Gibbs sampling and Expectation Maximum (EM) methods (e.g.,

Chen, Cliff, and Zhao (2017), Harvey and Liu (2018a), Jones and Shanken (2005)).

Fourth, it provides a unified framework for estimating the different characterizations

of the skill distribution: (i) the density function  (ii) the moments (e.g., mean, vari-

ance), (iii) the cumulative function Φ() = [ ≤ ] =
R 
−∞ () and (iv) the

distribution quantile () = Φ−1() where  denotes the probability level.10

Last but not least, it comes with a full-fledged econometric theory. For each estima-

tors that characterize the skill distribution, we derive its asymptotic distribution as the

number of funds  and the number of return observations  grow large (simultaneous

double asymptotics with   →∞)

B.2 Non-Parametric Estimation

We now explain the main steps of our non-parametric approach. For sake of brevity, we

describe the procedure for estimating the skill density  and relegate to the appendix

the formal treatment of the three remaining measures (moment, cdf, quantiles), as well

as the proofs of the different propositions.

To begin, we estimate the regression coefficients in Equation (1) for each of the 

funds in the population. The vector of coefficients ̂=
³
̂ ̂̂

0


´0
for fund  ( = 1 )

is computed as

̂= ̂−1
1



X
=1

 (4)

where  is an indicator variable equal to one if  is observable (and zero otherwise),

various aspects of finite mixture models (see the review paper of Chen (2017)). For example, the

classical distribution theory of the log likelihood test statistic does not hold for testing for no mixture

(homogeneity) against mixture alternatives (Ghosh and Sen (1985)).
10To lighten the notation, we do not subscript the density  and the other statistical quantities by

the skill measure.
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 =
P

=1  is the total number of return observations for fund ,  = [1−−1  0]0
is the vector of explanatory variables and ̂ =

1


P
=1 

0
 is the estimated

matrix of the second moments of  Using the estimated coefficients along with the size

and squared size time-series averages, 1 =
1


P
=1 −1 2 =

1


P
=1 

2
−1,

we can then compute each of the four skill measures as

Fd alpha : ̂ = ̂,

Size coefficient : ̂ = ̂,

Value added
(lifecycle)

: ̂ =c = ̂1 − ̂2

Value added
(steady state)

: ̂ =c = ̂1 − ̂
2
1 (5)

Given the unbalanced nature of the mutual fund panel,  can be small for some

funds. As a result, the inversion of the matrix ̂ can be numerically unstable and

yield an unreliable estimate ̂. To address this issue, we follow Gagliardini, Ossola,

and Scaillet (2016) and introduce a formal fund selection rule 1

 equal to one if the

following two conditions are met (and zero otherwise):

1

 = 1

n


³
̂

´
≤ 1    ≤ 2

o
 (6)

where 
³
̂

´
=

r


³
̂

´
min

³
̂

´
is the condition number of the ma-

trix ̂ defined as the ratio of the largest to smallest eigenvalues  and ,

  =  is the inverse of relative sample size  , and 1  2 denote the two

threshold values. The first condition {
³
̂

´
≤ 1} excludes funds for which the

time series regression is poorly conditioned, i.e., a large value of 
³
̂

´
indicates

multicollinearity problems (Belsley, Kuh, and Welsch (2004), Greene (2008)). The sec-

ond condition {  ≤ 2} excludes funds for which the sample size is too small. Both
thresholds 1 and 2 increase with the sample size –with more return observa-

tions, the fund coefficients are estimated with greater accuracy which allows for a less

stringent selection rule.

Next, we estimate the skill density function using a standard non-parametric ap-

proach based on kernel smoothing.11 The estimated density ̂ at a given point  is

11See, for instance, Ait-Sahalia (1996), Ait-Sahalia and Lo (1998), and Stanton (1997) for applications

of kernel density estimation in finance.
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computed as

̂() =
1



X
=1

1

 

µ
̂ −



¶
 (7)

where  is the vanishing smoothing bandwidth–similar to the length of histogram

bars, the bandwidth  determines how many observations around point  we use for

estimation. The function  is a symmetric kernel function that integrates to one.

Because the choice of  is not a crucial aspect of nonparametric analysis, we use the

standard Gaussian kernel () = 1√
2
exp(−2

2
) for simplicity (see Silverman (1986)).

The following proposition examines the asymptotic properties of ̂() as the size

of the fund population  and the number of return observations  grow large for a

vanishing bandwidth 

Proposition II.1 As   → ∞ and  → 0 such that  → ∞ and
√
(2 +

(1 )
3
2 )→ 0, we have

√

³
̂()− ()− ()

´
⇒  (01())  (8)

and the bias term () is the sum of two components,

1() =
1

2
22

(2)() (9)

2() =
1

2
(2)() (10)

where 1 =
R
()2 2 =

R
2() (2)() is the second derivative of the

density () and (2)() is the second derivative of the function () = ()()

with () = (| = ) The term  is the asymptotic variance of the estimated

centered skill measure
√
 (̂−) equal to plim

→∞
(
2



X
=1

) For each skill

measure, the term  is given by

Fd alpha :  = 01
−1


Size coefficient :  = 02
−1


Value added
(lifecycle)

:  = 1
0
1

−1
 + (−1 − 1)

− 2
0
2

−1
 − (

2
−1 − 2)

Value added
(steady state)

:  = 1
0
1

−1
 + (−1 − 1)

− 21
0
2

−1
 − 21(−1 − 1) (11)
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where 1 (2) is a vector with one in the first (second) position and zeros elsewhere and

 = [
0
]. Under a Gaussian kernel, the two constants 1 and 2 are equal to

1
2
√

and 1 respectively

Proof. See the appendix.

Proposition II.1 yields several important insights. First, it shows that the estimated

density function ̂() is asymptotically normally distributed, which facilitates the con-

struction of confidence intervals. As shown in Equation (9), the width of this interval

depends on the variance term 1() which is higher in the peak of the density.
12

Second, ̂() is a biased estimator of (). Therefore, we can improve the density

estimation by adjusting for the bias term () Equations (10)-(11) reveal that ()

has two distinct components The first component 1 is the smoothing bias, which is

standard in non-parametric density estimation (e.g., Silverman (1986), Wand and Jones

(1995)). The second component 2 which is referred to as the error-in-variable (EIV)

bias, is non-standard–it arises because we estimate  using the estimated skill measure

instead of the true one (i.e., ̂ instead of )

Finally, Proposition II.1 provides guidelines for the choice of the bandwidth. We

show in the appendix that the choice of the optimal bandwidth ∗–the one that min-
imizes the Asymptotic Mean Integrated Squared Error (AMISE) of ̂()–depends on

the relationship between  and : (i) if  is small relative to  (25 → ∞), ∗ is
proportional to ( )−

1
3 ; (ii) if  is not small relative to  (25 → 0) ∗ is propor-

tional to −
1
5 .13 Our Monte-Carlo analysis reveals that given our actual sample size, the

two bandwidth choices produce similar results with a slight advantage to the first case.

Motivated by these results, we use the following bandwidth in our baseline specification:

∗ =
µ
2

1

Z
(2)()(2)()

¶−1
3

( )−
1
3  (12)

B.3 Adjusting for the Bias

Building on the insights of Proposition II.1, we show how to compute the bias-adjusted

density estimator Our approach consists of estimating the two bias terms 1(),

1() and the optimal bandwidth ∗ using a Gaussian reference model in which
the fund skill measure  and the log of the asymptotic variance  = log() are

12Similar to Equation (7), Okui and Yanagi (2018) consider a kernel estimator for the density of the

mean and autocorrelation of random variables. However, their distributional results differ from those

derived in our regression context aimed at measuring fund skill.
13The AMISE is defined as the integrated sum of the leading terms of the asymptotic variance and

squared bias of the estimated density ̂().

12



drawn from a bivariate normal distribution:  ∼ ( )  ∼ ( ) and

( ) = 14

This simple reference model has several appealing properties. First, the estimators

of the bias and the bandwidth are simple to compute because they are all available in

closed form. Second, they are precisely estimated because they only depend on the five

parameters of the normal distribution. Finally, we can perform a comparative static

analysis on the two bias components, i.e., we can determine how their shapes change

with the different parameters and gey some useful economic insights (as shown below).

These benefits are not shared by the alternative approach in which the bias terms

are directly inferred from Equations (9)-(10) via a non-parametric estimation of the

second-order derivatives (2) and (2). Estimating these derivative terms is notoriously

difficult and generally leads to large estimation errors (e.g., Wand and Jones (1995;

Section 2.12)).15

The following proposition provides the closed-form expressions for the two bias com-

ponents and the optimal bandwidth as the size of the fund population  and the number

of return observations  grow large for a vanishing bandwidth 

Proposition II.2 As   → ∞ and  → 0 such that  → ∞ and
√
(2 +

(1 )
3
2 )→ 0, the two bias components under the reference model are equal to

1() =

∙
1

2
2

2 1

2
(̄2

1 − 1)
¸
1


(̄1) (13)

2() =

∙
1

2
exp

µ
 +

1

2
2

¶
1

2
(̄2

2 − 1)
¸
1


(̄2) (14)

where ̄1 =
− 


 ̄2 =
−  − 


 () =

1√
2
exp(−1

2
2) is the density

of the standard normal distribution. In addition, the optimal bandwidth ∗ is given by

∗ =
∙

2

12
√


3

45

µ
44
12
− 22 + 1

¶
exp

µ
 +

1

2
2(1−

2

2
)

¶¸−1
3

( )−
1
3  (15)

Proof. See the appendix

14A Gaussian reference model underlies the celebrated Silverman rule of thumb for the choice of the

bandwidth in standard non-parametric density estimation without the EIV problem. This rule gives

∗ = 106−
1
5  where  is the standard deviation of the observations (Silverman (1986)).

15We can estimate the th-derivative of a density  by kernel smoothing (Bhattacharya (1967)). The

rate of consistency of the derivative estimator equals (2+1)
1
2 and is much slower than the rate ()

1
2

for the density estimator. In other words, the higher-order derivatives are imprecisely estimated because

the rate of consistency decreases with the derivative order 
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Building on Proposition II.2, we compute the bias-adjusted density ̂
∗
() using the

following steps. First, we estimate the moments of the bivariate normal distribution in

the reference model using the estimated quantities ̂ and ̂ ( = 1  ) To compute

̂ = log(̂) we use the standard variance estimator of Newey and West (1987):

̂ =
2



X
=1

̂
2
 + 2

X
=1

µ
1− 

+ 1

¶"
2



−X
=1

+̂̂+

#
 (16)

where ̂ is obtained by plugging the estimated quantities for the chosen skill measure

given in Proposition II.1, and  is the number of lags chosen to account for potential

serial correlation. Second, we insert these estimated moments in Equations (13)-(15)

to compute the bias terms b1(), b2() and the optimal bandwidth ∗ Third, we
remove the bias terms from the unadjusted density in Equation (7) to obtain the bias-

adjusted density estimator

̂
∗
() = ̂()− b1()− b2() (17)

While our approach allows for a simple bias adjustment, an important question is

whether the estimated bias terms are sufficiently accurate when the data do not follow

our simple reference model. To address this issue, we perform an extensive Monte-Carlo

analysis that replicates the salient features of the data. The results summarized in the

appendix reveal that the bias-adjusted estimator captures the true distribution ()

with remarkable accuracy.16

C Analysis of the Density Bias

C.1 The Shape of the Two Bias Components

To shed light on the bias adjustment mechanism, we now study the shape of the two

bias components in Equations (13)-(14) A key feature of the smoothing bias 1() is

that it depends on the total number of funds  As  increases, ∗ shrinks towards zero,
which reduces the magnitude of 1() With a population of several thousand funds,

the contribution of 1() thus becomes negligible. In contrast, the EIV bias 2()

depends on the number of observations  because it arises from the gap between ̂

and  Therefore, it can remain significant even if the fund population is large.

16Our results resonate with those reported by Silverman (1986) for the standard non-parametric

density estimation without the EIV problem. He shows that the rule of thumb for the bandwidth

choice, which relies on a Gaussian reference model, is quite robust to departures from normality.
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The sign of the EIV bias is driven by the term (̄2
2 − 1) which is negative when

 is close to the average  and positive otherwise. As a result, 2() is negative

in the center of the distribution and positive in the tails. The intuition for this result

is that the estimated skill measure is a noisy version of the true one (̂ =  +

estimation noise) Therefore, the density obtained with ̂ overestimates the probability

of observing extreme skill levels, i.e., the unadjusted density ̂() is too flat.

Importantly, the shape of the EIV bias obtained with the reference model is rep-

resentative of a large set of distributions. As shown in Proposition II.1, the true bias

2() is a function of the second-order derivative of the true density 
(2)() As long

as this density peaks around its mean, (2)() takes negative (positive) values in the

center (tails) of the distribution–just like the bias obtained with the reference model.17

To illustrate, Figure 1 plots the two bias components 1() and 2() for the fd

alpha obtained with our entire sample of funds Consistent with our analysis, we find

that the smoothing bias is close to zero because of the large population size ( = 2 265),

while the EIV bias is significantly higher. If we integrate 2() in the center of the

distribution where its value is positive, we obtain a probability mass of 15%.

Please insert Figure 1 here

C.2 Comparative Statics for the EIV Bias

We can also use the reference model to perform a comparative static analysis on the

EIV bias. There are three key parameters that determine the shape of 2(): (i)

the volatility  of the skill measure (ii) the average level of the estimation variance

 = exp
¡
 +

1
2
2
¢
 and (iii) the correlation  between the skill measure and the

estimation variance

A higher value for  reduces the magnitude of 2() because it makes the cross-

sectional variation in the estimated measure more aligned with that of the true one (i.e.,

the relative importance of  over noise increases). A higher value for  increases the

magnitude of 2() because the estimated skill measure becomes more volatile (i.e.,

the relative importance of noise over  increases) Finally, a higher value for  moves

2() to the right because funds with higher skill are also more likely to exhibit higher

estimation variance.

17The only case where 2() differs from 2() is if the true density () is a mixture of distribu-

tions whose components have means extremely far away from one another such that we have a trough

instead of a peak at the mean of ().
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D Extensions

D.1 Time-Varying Skill

We conclude our presentation with several useful extensions. We can use our non-

parametric approach to examine the time-variation in individual fund returns. This

analysis provides an extension of recent studies that examine how the gross alpha at the

aggregate level varies with size, turnover, and business cycle conditions (e.g., Chen et

al. (2004), Kacperczyk, van Nieuwerburgh, and Veldkamp (2014), Pastor, Stambaugh,

and Taylor (2015, 2017)). To estimate the density () associated with each alpha

predictor  ( = 1  ), we generalize Equation (1) as:  +
P
=1

−1 + 0 + ,

where −1 is predictor  and  denotes its impact on the fund gross alpha Then,

we replace ̂ with the estimated coefficient ̂ and modify  accordingly.

D.2 Net Alpha

We can also evaluate mutual fund performance using the net alpha   which measures

the average abnormal return earned by investors. To estimate the cross-sectional density

() we estimate the net alpha of each fund using the following regression:  =

 −  =  + 0 +  where 

 denotes the fund net excess return. Then, we

replace ̂ with the estimated net alpha ̂

 and modify  accordingly.

D.3 Factor Beta

Finally, we can study the fund betas on the different risk factors. To compute the

distribution () associated with each risk factor  ( = 1 ), we replace ̂ with

the estimated beta ̂ and to modify  accordingly Our approach departs from

previous work in which the statistical inference is typically based on the estimated betas

without the EIV bias adjustement.

III Data Description

A Mutual Fund Data

We conduct our analysis on the entire population of actively managed US equity funds.

We collect monthly data on net returns and size, as well as annual data on fees, turnover,

and investment objectives from the CRSP database between January 1979 and December
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2015 (444 observations).18. We measure the monthly gross return  as the sum of the

fund monthly net return and fees The net return  is computed as a value-weighted

average of the net returns across all shareclasses using their beginning-of-month total

net asset values. The monthly fees  are defined as the value-weighted average of the

most recently reported annual fees across shareclasses divided by 12. We measure the

fund size −1, by taking the sum of the beginning-of-month net asset values across all

shareclasses. Following Berk and van Binsbergen (2015), we adjust size for inflation by

expressing all numbers in January 1, 2000 dollars.

Our initial sample includes all funds with a valid equity investment objective from

Lipper, Strategic Insight, Wiesenberger, or CRSP. We exclude index funds and eliminate

return observations of tiny funds by imposing a minimum size of $15 million (see Chen

et al. (2004), Pastor, Stambaugh, and Taylor (2015)). To apply the fund selection rules

in Equation (6), we follow Gagliardini, Ossola, and Scaillet (2016) and select funds for

which the condition number (CN) of the matrix ̂ is below 15 and the number of

monthly observations  is above 60
19 These selection criteria produce a final universe

of more than 2,000 funds.20

We further group funds according to their investment styles (small cap, large cap,

growth, and value). At the start of each month, we classify each fund using the style

information provided by Lipper. If this information is missing, we use the investment

objectives reported by Strategic Insight, Wiesenberger, and CRSP (see the appendix for

additional details). A fund is included in a given group if its style corresponds to that of

the group for a sufficiently long period such that the two selection rules are satisfied (i.e.,

CN ≤15 and  ≥ 60) We follow the same procedure to form terciles of funds based

on their characteristics (expense ratios and turnover), where the monthly turnover is

defined as the most recently observed ratio of min(buys,sells) on fund size (see Pastor,

Stambaugh, and Taylor (2017)).

B Benchmark Models

To estimate the skill measures in Equations (1)-(3), we primarily use the benchmark

model of Cremers, Petajisto, and Zitzewitz (2012; CPZ hereafter). Similar to the

model of Carhart (1997), the CPZ model includes four factors, i.e., we have  =

18The starting date corresponds to the first month when the risk factors are available.
19The monthly returns need not be contiguous. We delete the observation following any missing

returns because CRSP reports the cumulated return since the last reported observation.
20We compute ̂ using a lag of three months ( = 3) To mitigate the impact of outliers on the

estimated parameters in the reference model, we also exclude the values for ̂ and ̂ that are five

standard deviation away from the mean.

17



[   ]
0, where    and  capture the excess re-

turns of the market, size, value, and momentum factors. However, the CPZ model

departs from the Carhart model in two respects: (i)  is proxied by the excess return

of the S&P500 index (instead of the CRSP market index), and (ii) the size and value

factors are index-based, i.e.,  is measured as the return difference between the

Russell 2000 and the S&P500, while  is measured as the return difference between

the Russell 3000 Value and the Russell 3000 Growth.

It is common for US equity managers to use as benchmarks the S&P500 and the

Russell 2000, which both cover about 85% of the total market capitalization. As noted

by CPZ, the Carhart model fails to price these passive, well-diversified indices–for

instance, the Russell 2000 produces a Carhart alpha of -2.4% per year over the period

1980-2005. This implies that small-cap managers are likely be classified as unskilled if

they use the Russell 2000 as benchmark. Motivated by these results, we use the CPZ

model in our baseline specification, and later repeat the analysis with the Carhart model.

C Summary Statistics

Table II reports summary statistics for value weighted portfolios of funds for the entire

population and the different groups. In Panel A, we report the first four moments of

the portfolio gross excess returns. In the entire population, the portfolio achieves a risk-

return tradeoff similar to that of the aggregate stock market with a mean and volatility

equal to 7.7% and 15.1% per year. It also exhibits a negative skewness (-0.8) and a

positive kurtosis (5.4). The results are similar across groups except for small cap funds

which produce higher mean and volatility.

In Panel B, we repeat the analysis for the estimated betas on the four factors in

the CPZ model. Consistent with intuition, small cap funds are heavily exposed to the

size factor (0.81). Whereas growth funds are negatively exposed to the value factor

(-0.28), the opposite holds for value funds (0.20). We also find that high expense and

high turnover funds tilt toward small cap, growth stocks.

Please insert Table II here
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IV Empirical Results

A The Two Dimensions of Skill

A.1 The First Dollar Alpha

We begin our empirical analysis with the fd alpha which measures the fund ability to de-

tect profitable trades. After estimating  for each fund using Equation (1), we apply our

non-parametric approach to compute the cross-sectional density ̂
∗
() given in Equation

(17) To describe the properties of this distribution, we also compute the bias-adjusted

estimates of the (i) moments (mean, variance, skewness, kurtosis), (ii) proportions of

funds with negative and positive fd alphas, ̂− and ̂+  and (iii) distribution quantiles

at 10% and 90%, ̂(10) and ̂(90)

Table III reveals that the fund investment skills are both economically large and

widespread–on average, the fd alpha equals 3.5% per year and around 90% of the

funds in the population are skilled. These results resonate with the calibration exercise

in BG that yields a value for ̂+ around 80%. This implies that most funds are able

to detect undervalued stocks based on their private information, and to correct for the

mispricing caused by noise traders (e.g., Stambaugh (2014)).

Another striking feature of the fund population is the wide heterogeneity in skill, as

captured by the 8.2%-difference between ̂(10) and ̂(90). This heterogeneity is mostly

visible in the right tail–the skewness of ̂
∗
() is equal to 6.2 which implies that a

minority of funds exhibit stellar investment skills. An open question is whether these

skilled funds diversify their holdings across many stocks or instead take concentrated

bets. Consistent with the second interpretation, we find that funds with high fd alphas

also tend to have high idiosyncratic risk (i.e., the correlation  in the bias correction

term equals 0.27).

Adjusting for the EIV bias is essential to infer the true distribution (). As dis-

cussed in Section II.C, this adjustment requires that we remove the probability mass

from the tails, and transfer it onto the center–slightly to the right because  is positive

(i.e., +   ) Both changes are economically significant and explain why all

the estimators directly obtained from ̂ are biased. For one, the unadjusted distribution

̂() produces an implausibly large difference of 11.4% between the quantiles ̂(10) and

̂(90), and completely fails to capture the asymmetry in skill (the estimted skewness

without the EIV correction is a mere 0.5).

Turning to the analysis of the style groups, we document sharp differences between

the two size groups (Table III and Figure 4). Specifically, small cap funds produce a
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higher average annual fd alpha (5.1% vs 2.0%) and a higher skill proportion ̂+ (95.4%

vs 82.3%). There are two potential explanations for this skill gap. First, small cap

stocks have higher idiosyncratic volatility and thus a larger flow of company specific

information. Therefore, they provide more opportunities for stock picking activities (e.g.,

Duan, Yu, and McLean (2009)). Second, their mispricing is more persistent because

there is less competitive pressure among funds.21

Finally, we measure skill among funds with different levels of expense ratios and

turnover. This analysis is motivated by the previous literature which commonly uses

both characteristics as predictors of mutual fund performance.22 Table III shows that

high expense funds unambiguously dominate low expense funds, i.e., ̂
∗
() exhibits

a higher average (4.6% vs 2.2%) and a higher estimated skewness (5.9 vs 5.0). In

contrast, trading activity provides little information about the fund investment skills

as the proportions ̂− and ̂+ remain largely unchanged. This result suggests that the

root cause for the existence of unskilled funds (̂− =12.5%) is not the overconfidence
and excessive trading behaviour of managers. A more plausible explanation is that

these funds take active positions to hide their lack of skill from investors (Berk and van

Binsbergen (2018)).

Please insert Table III here

Please insert Figure 2 here

A.2 The Size Coefficient

We now turn to the analysis of the size coefficient which measures the fund sensitivity to

capacity constraints. To ease interpretation, we compute the standardized size coefficient

̂ of each fund in Equation (1) so that it corresponds to the annual change in gross

alpha for a one standard deviation change in fund size. Because we estimate the entire

cross-sectional distribution () we contribute to the previous literature that imposes

a common size coefficient across funds ( = ̄).

Table IV shows that 85.9% of the funds in the population are exposed to capacity

constraints. The magnitude of the size coefficient is typically large–on average, a one

standard deviation increase in fund size reduces the gross alpha by 1.5% per year.23

21Small cap stocks are prone to idiosyncratic fluctuations and asymmetric information problems and

are thus largely untouched by mutual funds (e.g., Grompers and Metrick (2001), Hong, Lim, and Stein

(2000)).
22An non-exhaustive list include Elton et al. (1993)), Gil-Bazo and Ruiz-Verdu (2009), Grinblatt and

Titman (1989), Pastor, Stambaugh, and Taylor (2015), and Wermers (2000).
23This number is similar to the estimate reported in the recent study by Harvey and Liu (2018b).
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These results provide strong support to previous theoretical work that emphasizes the

importance of capacity constraints for the fund industry (e.g., BG, Pastor and Stram-

baugh (2012)).

The distribution ̂
∗
() exhibit similar features as ̂

∗
() First, it implies a strong

heterogeneity in the population, as captured by the 3.6% difference between the quantiles

̂(90) and ̂(10). Therefore, assuming a constant ̄ provides fails to capture the diverse

impact of capacity constraints across funds. Second, ̂
∗
() is heavily skewed with a level

of 8.1. This result constrasts with the parametric approach of Harvey and Liu (2018b)

in which () is assumed to be normal. Intuitively, a normal distribution fails to capture

the asymmetric nature of capacity constraints–whereas  is bounded around zero for

unconstrained funds, it rises significantly for funds constrained by capacity constraints.

Finally, the EIV bias adjustment has a large impact–in particular, it allows us to

uncover the strong asymmetry of the true distribution ()

The impact of capacity constraints varies significantly across the two size groups

(Table IV and Figure 4). For one, small-cap funds have, on average, a higher size

coefficient (2.0% vs 1.0%). This finding resonates with previous studies that establish a

link between the tightness of capacity constraints and the illiquidity of small-cap stocks

(e.g., Chen et al. (2004), Yan (2004)).24 We also document a similar pattern for groups

sorted on characteristics–funds with high expense ratios and high turnover tend to

follow strategies that are difficult to scale up. Part of this difficulty is due to the fact

that these funds tilt their portfolios toward small cap stocks (see Table II).

Please insert Table IV here

Please insert Figure 3 here

A.3 The Correlation between The two Skill Dimensions

An important insight from our joint analysis of the two skill dimensions is that they are

positively correlated. A clear example is provided by the two size groups. We find that

small cap funds exhibit both higher fd alphas and higher size coefficients than large cap

They find that a $100 mio. increase in size reduces the gross alpha by 0.17% per year. In our case,

the implied reduction is equal to ̄
̄
100 mio= 15

65
= 023% per year, where ̄ ̄ are the average size

coefficient and standard deviation of fund size equal to 1.5% and $650 mio., respectively.
24To check that our results are not driven by the omitted exposure of small cap funds to aggregate

liquidity risk, we use an alternative benchmark model that includes the traded liquidity factor of Pastor

and Stambaugh (2003). Our results reported in the appendix remain unchanged.
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funds. We observe the same empirical regularity among high and low expense funds.25

The implications of this positive correlation are twofold. First and foremost, we need

to combine the two skill dimensions to determine the overall skill level. For instance,

large cap funds may well dominate small cap funds if they are more able to scale up

their less profitable trading ideas. We address this issue below by computing the value

added which allows us aggregate the two skill dimensions into a single measure.

Second, it helps us reconcile the literature on the predictive content of expense ratios.

On the one hand, some studies argue that high expense ratios signal superior skill (e.g.,

Kacperczyk, van Nieuwerburgh, and Veldkamp (2014), Pastor, Stambaugh, and Taylor

(2017)). On the other hand, previous work provides empirical evidence that favors the

opposite interpretation (e.g., Elton et al. (1993), Gil-Bazo and Ruiz-Verdu (2009)).

Our results show that both conclusions hold depending on which skill dimension is

examined–high expense funds are skilled at generating profitable ideas, but unskilled

at resisting capacity constraints.

B The Value Added

B.1 The Two Measures of the Value Added

We now examine the two measures of the fund value added. The first measure 

determines the profits earned the fund during its entire lifecycle (Equation (2)). The

second measure  determines the profits once the fund reaches its average size (Equa-

tion (3)). Each estimated measure is a function of the fd alpha ̂ and size coefficient

̂ and thus provides an economically-motivated approach for aggregating the two skill

dimensions. The summary statistics for the bias-adjusted densities of the two measures

̂
∗
() and ̂

∗
() are respectively reported in Panels A and B of Table V.

Overall, mutual funds earn large profits through their investment and trading de-

cisions. The lifecycle value added  is, on average, equal to 1.9 mio. per year, and

64.1% of the funds earn positive profits during their lifecycle.26 Here again, adjusting for

the EIV bias is key for measuring skill–the unadjusted estimator of + is below 50%

and thus largely underestimates the ability of funds to create value. The value creation

is even more striking with the steady state value added  Once funds reach their

average size, more than 70% of them earn positive profits, and the average value added

jumps to 7.1 mio. per year. This 5.2 mio. difference (7.1-1.9) is due to the negative

25 In the entire population, a simple (biased) correlation calculation based on the estimated coefficients

̂ and ̂ yields a large coefficient of 0.84.
26The average value added is qualitatively similar to the estimate of 3.2 mio. per year reported by

Berk and van Binsbergen (2015) for a sample of US and international funds.
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correlation between the gross alpha and size (i.e., cov( −1)  0). As funds go

through different phases of their lifecycle, their annual profits can be much lower than

 because high values of  come with low values of −1 (and vice-versa).

We find that the proportion of funds with positive value added is lower than the

one obtained with the fd alpha (̂+ − ̂+ = 234% and ̂+ − ̂+ = 148%) This

decrease arises because some funds grow too large to maintain positive gross alphas.

Using this information, we can therefore sort funds with negative value added in two

groups: around 40% of them have poor investment ideas, while the remaining 60% are

initially skilled but become too large27

Similar to the two skill dimensions, the average value added provides a poor sum-

mary of the profits earned across funds. First, the heterogeneity in the value added

is substantial–the volatility of ̂
∗
() and ̂

∗
() is up to 4.8 times larger than its

average. Second, both distributions exhibit high levels of skewness and kurtosis. As a

result, funds in the right tail reap staggering profits, i.e., ̂(90) reaches 11.1 mio. for

 and 25.6 mio. for  In other words, these funds are particularly skilled and are

correctly identified as such by investors.

Turning to the analysis of the different fund groups, we find that small cap funds

dominate large cap funds. For both measures of value added, the small cap group

produces a higher average (6.3 mio. vs 2.4 mio.) and a higher proportion ̂+ (73.7%

vs 60.3%). Therefore, the high fd alphas of small cap funds allow them to reap higher

profits even though they face tighter capacity constraints. A similar pattern emerges

for low and high turnover funds. Specifically, the low turnover group produces a higher

average (9.4 mio. vs 3.5 mio.) and a higher proportion of skilled funds (85.6% vs 64.3%).

The comparison of groups sorted on expense ratios is more subtle. Overall, low

expense funds dominate high expense funds–both the average and ̂(90) are significantly

larger (7.9 mio. vs 3.4 mio. and 37.5 mio vs 13.4 mio.). However, a higher proportion of

low expense funds destroy value once they reach the steady state size (32.5% vs 23.0%).

This negative outcome implies that investors allocate too much money to these funds,

which then fail to eliminate the negative impact of this excessive inflow.

Please insert Table V here

27Specifically, we have 1
2


̂−
̂
−


+
̂−

̂
−



= 403% and 1

2


̂−−̂−
̂
−


+
̂−−̂

−


̂
−



= 597%
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B.2 Is the Value Added Optimized?

A key prediction of the neoclassical BG model is that skilled funds are in scarce supply

and thus able to maximize their profits. In practice, the value added is likely to differ

from its optimal value because of learning effects. As investors do not observe the fund

skill dimensions  and  they must learn about them using past data (Pastor and

Stambaugh (2012)). During this learning phase, their fund investments may be very far

from the optimal size that maximizes the value added. Whereas the impact of these

learning effects should decrease as the fund size approach its average level, they may

have a large impact on the average profits earned by funds during their lifecycle.

To address this issue, we use our non-parametric approach to estimate the distrib-

ution of the optimal value added ∗  Using the estimated coefficients ̂ and ̂ from

Equation (1), we compute the estimated optimal value added for each fund  as

̂ =c∗ = ̂2

4̂
 (18)

and the error term  as

 =
2

4
01

−1
 −

2
42

02
−1
 (19)

Then, we apply our methodology to compute the bias-adjusted density ̂
∗
(∗) and its

summary statistics Equation (20) requires both ̂ and ̂ to be positive. Therefore, we

conduct the analysis on funds for which this condition is satisfied (75% of the sample).

The empirical evidence in Table VI is broadly supportive of the predictions of the

model. The average values for the steady state and optimal value added  and ∗
are equal to 9.0 mio. and 13.4 mio. per year. Therefore, funds extract close to 70% of

the optimal profits once they reach the steady state size.28 In contrast, the difference

between the lifecyle and optimal value added  and ∗ is much larger (1.3 mio. vs
13.4 mio.). This result suggests that learning effects have a sizable impact on the profits

that funds are able to generate over time.

Consistent with our previous results, we find that low expense and low turnover

funds produce the highest optimal value added (23.5 and 27.3 mio., on average). In

other words, both groups achieve the most profitable combinations of the two skill

dimensions. The biggest gap (in relative terms) between the steady state and optimal

28 In addition, the pairwise correlation between ∗ and  equals 0.94, which suggests that funds
with the highest skill potential do create more value
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value added is observed among large cap and high turnover funds–in both groups, the

ratio
∗ is barely above 50%, on average. As a result, these funds produce low value

added partly because they fail to exploit their skill potential.

Please insert Table VI here

C The Gross Alpha

C.1 The Information Content of the Gross Alpha

Our final analysis focuses on the gross alpha which is commonly used as a measure of

skill. The model presented in Section II.A shows that the gross alpha is related skill only

if funds choose specific compensation schemes. Each of them implies specific predictions

regarding the levels of fund fees and size (Table I). We can therefore examine whether

these predictions hold empirically.

The results in Table VII suggests that the gross alpha contains limited information

about skill. First, we find little evidence that funds systematically choose one of the

three compensation schemes under which the gross alpha is aligned with the fd alpha,

the size coefficient, or the value added. Schemes II (size coefficient) and III (value added)

are cleary rejected–the fees are not tiny and the size is not constant across funds. Only

Scheme I (fd alpha) is partly supported by the data because both fees and size vary

across funds. Second, the pattern for fees and size is consistent with Scheme IV under

which the alpha is uninformative about skill. We find that fees and size are negatively

correlated (i.e., the pairwise correlation equals -0.19 across funds and -0.96 across fund

groups). In other words, some funds are willing to charge low fees in order to manage a

large asset base and, possibly, mitigate several institutional constraints (see Habib and

Johnson (2016)).29

Consistent with this analysis, Table VIII reveals that the summary statistics for the

gross alpha distribution ̂
∗
() are uninformative about the size coefficient and the value

added, and are only weakly related to those reported for the fd alpha (Table III).

Please insert Table VII here

Please insert Table VIII here

29The Investment Company Act imposes diversification rules on 75% of the portfolio that prevent

managers from exhausting their trading opportunities if the fund is too small. Holding a portion of the

fund passively managed also allows funds to hide their informed trades and obtain better prices.
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C.2 From Gross to Net Alphas

Finally, we apply the non-parametric approach to the net alpha. This performance

analysis reported in Table IX determines whether investors receive any surplus alphas

and provides information about the bargaining power of funds when setting fees.

The neoclassical BG model predicts that the net alphas equal zero as skilled funds

are able to extract all the profits they generate (i.e.,  = ) Consistent with this

prediction, the proportion of funds with positive alphas drops from 72.6% to 354% as

move from gross to net alphas30 31 In addition, fund groups with higher gross alphas

also tend to charge higher fees (the pairwise correlation equals 0.57).

However, we find that the left tail of the net alpha distribution does not shrink

towards zero–̂
∗
() is essentially a shifted version of () with a similar volatility

and a fatter left tail. In other words, some funds are able to charge excessively high

fees to investors (Christoffersen and Musto (2002), Gruber (1996)). The behaviour of

these apparently irrational investors drives a wedge between gross alphas and fees that is

left unexplained by the neoclassical model. The same behavior also explains why some

unskilled funds are allowed to grow sufficiently large and destroy a sizeable amount of

value (Table V).

Please insert Table IX here

D Sensitivity Analysis

D.1 Alternative Asset Pricing Models

(Carhart model). We now summarize the additional results reported in the appendix.

First, we use the Carhart model to estimate fund skill. Overall, our analysis reveals

that the distributions of the two skill dimensions remain largely unchanged. The fd

alpha is equal to 2.7% per year, on average, and is positive for 83.0% of the funds (vs

3.5% and 87.5% for the CPZ model). For the size coefficient, the similarity is even more

striking–on average, it is equal to 1.4% per year and 83.9% of the funds have a positive

coefficient (vs 1.5% and 85.9%). The main difference is observed for the small cap group

30Both proportions are significantly larger than those obtained with the False Discovery Rate approach

(Barras, Scaillet, and Wermers (2010)). Intuitively, this approach estimates + and + by counting

funds with large alpha -statistics and thus does not detect all the funds with positive gross/net al-

phas (see Barras (2018)). In contrast, our non-parametric approach directly estimates the gross alpha

distribution using information from the entire cross-section of funds.
31The presence of search costs for which investors need to be compensated can rationalize the existence

of positive net alphas (Garleanu and Pedersen (2018)).
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in which the annual fd alpha drops 5.0% to 3.2%, on average. This sharp reduction

arises because the Carhart model assigns a negative alpha to the Russell 2000 index.

(Five-factor model). We also measure fund skill using the five-factor model of Fama

and French (2015) which includes the market, size, value, profitability, and investment

factors. Using this model leaves the distribution of the size coefficient largely unchanged.

However, it lowers the proportion of funds with a positive fd alpha from 87.5% to 75.6%.

In other words, around 12% of the funds achieve a positive fd alpha because they imple-

ment profitability- and investment-based strategies. This tilt is particulary pronounced

for low expense and low turnover funds as their average fd alphas respectively drop by

0.9% and 1.3% per year.

(CPZ-liquidity model). Finally, we check that the strong differences between small

cap and large cap funds along the two skill dimensions are not simply due to an omitted

liquidity risk factor. To address this issue, we add the traded liquidity factor of Pastor

and Stambaugh (2003) to the CPZ model. We find that the distributions of the two

skill dimensions remain largely unchanged. Therefore, the superior fd alphas produced

by small cap funds is not driven by an aggregate liquidity risk premium.

D.2 Small Sample Bias

We also use an alternative estimation procedure to control for the small sample bias in

the estimated size coefficient This bias stems from the positive correlation between the

return residual  and the change in size , as positive return surprises increase the

fund size (e.g., Pastor, Stambaugh, and Taylor (2015), Stambaugh (1999)). Whereas

this bias vanishes asympotically, it can potentially affect the estimated coefficients of

funds with short return histories. To address this issue, we use the approach of Amihud

and Hurvich (2004) that adds a proxy for the size innovation ̂ to the set of regressors

in Equation (1) (see the appendix for details).32 The empirical results reveal the bias

adjusted densities for the two skill dimensions remain largely unchanged.

D.3 Alternative Specifications for Size

(Industry-adjusted size). We consider different specifications to model the relation be-

tween the fund gross alpha  and its size −1. Following Harvey and Liu (2018b), we
replace −1 with −1 defined as the ratio between the size of the fund and that of the
active fund industry. This choice is motivated by the possibility that the fund capacity

32The inclusion of the estimated variable ̂ does not change the properties of our non-parametric

density estimator. In particular, the smoothing and EIV biases in Equations (9)-(10) remain unchanged

because ̂ only affects the higher order terms beyond −1.
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constraints are affected by the total size of the industry. We find that the bias-adjusted

distribution ̂
∗
() remains largely unchanged.

(Log size). Next, we replace −1 with log(−1) and find qualitatively similar
results to those reported in Table IV for the size coefficient. Using a log specification is

useful when imposing a constant size coefficient, as fund alphas are more likely to respond

similarly to relative changes in size (vs absolute changes). However, this specification

seems less important here because we allow for fund-specific size coefficients.

(Fixed costs). We also test whether the relation between  and −1 is subject
to non-linearities that may bias the estimated size coefficient One main source of non-

linearities is the existence of fixed operating costs . In this case, we have:  =

 − −1 − 
−1 =  − −1 − 

1
−1  Estimating this equation for each fund, we

find that the distribution ̂
∗
() remains largely unchanged.

(Industry-wide capacity constraints). Finally, we re-estimate Equation (1) after re-

placing −1 with an industry wide measure of capacity constraints, which is computed
as the ratio of the industry size on the total market capitalization. Consistent with

Pastor, Stambaugh, and Taylor (2015), we find evidence that the individual fund gross

alphas vary with industry wide capacity constraints. However, the estimated coefficients

are less precisely estimated because the regression condition numbers in Equation (5)

increase significantly (the sample size drops to 486 funds).

V Conclusion

In this paper, we apply a new approach for measuring the entire skill distribution across

mutual funds. Our approach is non-parametric and thus particularly suited to the analy-

sis of skill. For one, it avoids the challenge of correctly specifying the skill distribution.

It also allows us to jointly examine multiple skill measures, including the two skill di-

mensions (the fd alpha and size coefficient), and the two measures of the value added

(lifecyle and steady state). In addition to its flexibility, our approach brings several

advantages–it is simple to implement, applicable to all the descriptive statistics of the

skill distribution, and supported by econometric theory.

Our empirical analysis yields several insights into the skill level in the fund industry.

It reveals that most funds are able to detect profitable trades–around 85% of them

produce positive fd alphas. However, most funds are are also heavily exposed to capacity

constraints–around 85% of them have a positive size coefficient. We also find that both

skill dimensions are positively correlated. For one, small cap funds produce higher fd

alphas than large cap funds, but also are also more exposed to capacity constraints.
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This positive correlation provides a strong motivation of examining the value added

because this measure combines the two skill dimensions together. Overall, we find that

funds earn substantial profits from exploiting their skills–around 70% of them generate

positive profits. Finally, the skill distributions for all measures are highly-non normal

and reveal substantial heterogeneity across funds. Therefore, computing simple skill

averages provides a poor summary of the diversity encountered at the individual fund

level.

Whereas our paper focuses on skill, our non-parametric approach has potentially

wide applications in finance and economics. We can use it to estimate the cross-sectional

distribution of any coefficient of interest in a random coefficient model. This is, for

instance, the case in asset pricing when we want to capture the heterogeneity across

stocks (e.g., risk exposure, commonality in liquidity), or in corporate finance when we

want to capture the heterogeneity across firms (e.g., investment and financing decisions).
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VI Appendix

A.1 Estimation of the density of the skill measures

In this appendix, we focus on the proof of Proposition II.1 stated for the four skill mea-

sures. The proof for smoothing estimated slopes (betas) or other quantities estimated

with parametric rates follows similar arguments. Let us first focus on the fd alpha

 = . From the OLS estimation, we have:

̂ = 01̂
−1


1



X


 =  + 01̂
−1


1



X

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1√
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0
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Ã
1√
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X
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!
≡  +

1√
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̂  (20)
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Moreover, let us write

̂ =  +
1√

̂  (21)

where  =  
1√


X


,  = 01
−1
 , and   = plim→∞  . Hence,

̂
√
 is the estimation error on  = . In particular, ̂ is the component

due to estimating the matrix  and to the random sample size . Then, we write

̂()− () = 1 + 2 + 3 + 4, where:
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The first term 1 is the smoothing bias, the second term 2 is the Error-in-Variable (EIV)

bias, 3 is the main stochastic term, and 4 is a remainder term, which is negligible w.r.t.

the others. We characterise the first three dominating terms in the following.

(i) From standard results in kernel density estimation, the smoothing bias is such

that 1 =
1

2
(2)()2

2 +(3), with 2 =

Z
2().

(ii) By a Taylor expansion of the kernel function  we have:

2 =

∞X
=1
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Moreover, by applying  times partial integration and a change of variable:
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where () = [

 | = ]() for  = 1 2 . We have 1() = 0 and
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lim→∞2() = [| = ]() ≡ () where  = 2plim→∞
1



X


.

By weak serial dependence of the error terms, functions () for   2 are bounded

with respect to  . Thus, we get: 2 =
1

2
(2)() +(1 32 + 2 )

(iii) Let us now consider term 3. For expository purpose, let us assume that the

error terms are cross-sectionally independent, and the factor values  are treated as

given constants. Then:
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From the above arguments, we have
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Under regularity conditions, the application of an appropriate Central Limit Theorem

(CLT) implies
√
3 ⇒  (0 ()1), with 1 =

Z
()2.

For the  (fd dollar),  (size coefficient), and  (value added) measures, we can

proceed similarly by using the corresponding definition for  listed in the statement

of Proposition I.1.

A.2 Asymptotic Mean Integrated Squared Error

From the previous subsection, we get the asymptotic expansion of the bias and variance

of the estimator ̂() with leading terms: () = 1() + 1() and 2() =
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1


()1 The AMISE (asymptotic mean integrated squared error) is given by:

() =

Z
[2() + ()2]

=
1


1 +

42
2

4

Z
[(2)()]2

+
22

2

Z
(2)()(2)()+

1

4 2

Z h
(2)()

i2


The optimal bandwidth ∗ is the minimizer of the AMISE, and solves the equation:

− 1

2
+ 1

3 + 2



= 0

⇐⇒ 1 = 1
5 + 2

3


 (22)

where 1 = 2
2

Z
[(2)()]21 and 2 = 2

Z
(2)()(2)()1.

Let us investigate the speed of convergence to 0 of the optimal bandwidth ∗ as a
function of  and  . We assume that 2  0. There are three possible cases:

(i) The optimal bandwidth is such that 5 tends to a nonzero constant and 3 →
0. Then, we have ∗ ∼ 

−15
1 −15, that is the Silverman rule. This solution is

admissible, i.e., satisfies 3 → 0, if the sample sizes  and  are such that

25 → 0, i.e.,  is sufficiently large.

(ii) The optimal bandwidth is such that 3 tends to a nonzero constant and 5 →
0. This case is possible only if  → ∞. Then, we have ∗ ∼ 

−13
2 ( )−13.

This solution is admissible, i.e., satisfies 5 → 0, if the sample sizes are such that

25 →∞.

(iii) When 25 → , with   0, the two rates of convergence −15 and ( )−13

coincide. Then, equation (22) has a solution such that ∗ ∼ ̄15−15, where ̄
solves the equation 1 = 1̄+ 2̄

35.

Let us now consider the asymptotic distribution of estimator ̂() for a generic

bandwidth sequence  shrinking to zero such that  → ∞. From the above analysis,

we have: √

³
̂()− ()− ()

´
⇒  (0 ()1) 

For some bandwidth sequences, the asymptotic bias is negligible. (i) If 2 → ∞, the
dominant component in the asymptotic bias is due to smoothing and is of order (2).
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Then, the asymptotic bias is negligible if 5 → 0. This condition is compatible with

the condition 2 → ∞ if  52 → 0. (ii) If 2 → 0, the dominant component in

the asymptotic bias is due to the EIV problem and is of order (1 ). The asymptotic

bias is negligible if  2 → 0.

Let us now consider the asymptotic distribution when  = ∗ is the optimal band-
width. We can check that

√
∗(∗3 + ∗2 + 1 32) = (1) if  4 → 0. Then, we

can replace the bias component () by its asymptotic approximation to get:

√
∗

µ
̂()− ()− 1

2
(2)()2

∗2 − 1

2
(2)()

¶
⇒  (0 ()1)  (23)

If 25 →∞, we have ∗2 → 0, and the smoothing bias is negligible. If 25 → 0,

we have ∗2 →∞, and the EIV bias is negligible.

A.3 A simple plug-in method

In this section we develop a simple plug-in method to implement the optimal band-

width that is solution of equation (22). We focus on a Gaussian kernel () =
1√
2
exp

¡−22¢. Then, the kernel constants are 1 =

Z
()2 =

1

2
√

and

2 =

Z
2() = 1. To compute constants 1 and 2, we rely on a reference

model which assumes a bivariate Gaussian distribution for  and  = log() with

mean parameters  , variance parameters 
2
 

2
, and correlation parameter . The

Gaussian marginal density of  implies that our reference model nests the one under-

lying the derivation of the Silverman rule for kernel smoothing. The constants 1 and

2 are given by:

1 = 2
√


Z
[(2)()]2

2 = 2
√


Z
(2)()(2)() = 2

√


Z
(4)()()

where we have used twice partial integration in 2. Let us now compute the two integrals

appearing in these formulas.

(i) We have () =
1




µ
− 


¶
, where () =

1√
2
exp

¡−22¢ is the stan-
dard Gaussian density. We get: (1)() = − 1



µ
− 


¶
 (), and (2)() =

37



1

2

Ãµ
− 


¶2
− 1
!
 (). Then:

Z
[(2)()]2 =

1

5

Z
(2 − 1)2 1

2
exp(−2) = 1

2
√
5

Z
(22− 1)2()

=
3

8
√
5



with the changes of variables from  to  = (− ), and from  to  =
√
2.

(ii) We have [exp()| = ] = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
, so

that () = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
() and

(2)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

×
(µ





¶2
− 2

2

µ
− 


¶
+

1

2

"µ
− 


¶2
− 1
#)

= exp

µ
 +

1

2
2

¶
1

2

Ãµ
−  − 



¶2
− 1
!
1




µ
−  − 



¶


We can also derive directly the last line by rewriting () = ()() in the bivari-

ate Gaussian reference model as a recentered Gaussian density up to a multiplicative

constant:

() = exp

µ
 +

1

2
2

¶
1




µ
−  − 



¶


and then differentiating twice that expression. Besides, we have:

Z
(4)()() =

exp

µ
 +

1

2
2(1− 2)

¶
5

Z
(4)() exp()()

=

exp

µ
 +

1

2
2(1− 2)

¶
2
√
5

Z
(44− 32 + 3) exp()()

where  = 
√
2, by using the same changes of variables as above and (4)() = (4−

62+3)(). Moreover, we have

Z
 exp()() = [ exp()] =




[exp()]
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with [exp()] = exp(22) for a standard Gaussian variable . This yieldsZ
(44− 32 + 3) exp()() =

µ
1

4

4

4
− 3 2

2
+ 3

¶
exp(22)

=
1

4
(4 − 62 + 3) exp(22)

Thus, we get:

Z
(4)()() =

3 exp

µ
 +

1

2
2(1− 22)

¶
8
√
5

(4412− 22 + 1)

The optimal bandwidth ∗ is obtained by solving Equation (22) with coefficients 1
and 2 given by:

1 =
3

45
 2 =

3

45
(4412− 22 + 1) exp

µ
 +

1

2
2(1− 22)

¶


We have 2 ≥ 0 when either 22 ≤ 6−2
√
6, or 22 ≥ 6+2

√
6. In our implementation,

the parameters , ,  and  are estimated by the sample moments of ̂ and

̂ = log ̂.

A.4 Estimation of the moments of the skill measures

Let us consider the estimation of the cross-sectional expectation [()], where  is a

given smooth function. We investigate the convergence properties of the cross-sectional

estimator
1



X
=1

(̂)1

 based on the OLS estimates ̂ of the non-trimmed assets only.

Proposition VI.1 states the asymptotic normality under the double asymptotics “large

, small " in unbalanced panel when we assume the linear factor model (2).

Proposition VI.1 As   →∞, such that  = ( 3),

√


Ã
1



X


(̂)1

 − [()]− B

!
⇒  (0  [()])  (24)

with B = 1

2
[(2)()].

Here we have an asymptotic bias B of order 1 where  is the same as in Proposi-
tion II.1. It comes from the estimation error in ̂ (EIV contribution). The asymptotic

variance is simply the cross-sectional variance  [()]. The condition  = ( 3) is
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used to control the remainder term in the Taylor expansion of function , and the bias

term. For the mean of the skill measures, we have () =  and the asymptotic bias is

zero from (2)() = 0. For that particular case, we do not need the condition  = ( 3)

for Proposition VI.1 to hold. For the second moment of the skill measures, we have

() = 2, and the asymptotic bias is not zero from (2)() = 2. We need to estimate

the asymptotic bias and asymptotic variance to get a feasible asymptotic normality re-

sult and to build asymptotic confidence intervals. We can achieve that by replacing the

unknown moments by consistent estimators based on empirical averages as done earlier

in the paper. For the variance of the skill measures, the asymptotic bias is the same as

the one for the second moment, but the asymptotic variance is 
h
( − [])

2
i
. The

asymptotic bias and variance for the skewness and kurtosis can be obtained via the delta

method. For example, for the skewness  = 
h
( − [])

3
i

h
( − [])

2
i32

,

its asymptotic bias is

B () = (∇3)B ([3
 ]) + (∇2)B ([2

 ])

with

∇3 =  []
−32

∇2 = −3[] []
−32 +

©
[3

 ]− 3[2
 ][] + 2[

3
 ]
ª
(
−3
2
) []

−52

where we denote the derivative of  w.r.t. [

 ] as ∇. Similarly, for the kurtosis

 = 
h
( − [])

4
i

h
( − [])

2
i2
, its asymptotic bias is

B () = (∇4)B ([4
 ]) + (∇3)B ([3

 ]) + (∇2)B ([2
 ])

with

∇4 =  []
−2 ∇3 = −4[] []

−2

∇2 = 6[]
2 []

−2 +
©
[4

 ]− 4[3
 ][] + 6[

2
 ][]

2 − 3[]
4
ª
(−2) []

−3

Proof of Proposition VI.1 : Equation (20) yields the mean value expansion

(̂) = () + (1)(̄)
1√

̂ + (2)(̄)

1

2
̂2 
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where ̄ lies between ̂ and . Then we get

√


Ã
1



X


(̂)1

 − [()]− B

!

=
1√


X


(()− [()])− 1√


X


()(1− 1 ) +
1√


X


1

 
(1)(̄)̂

+
1

2

1√


X


³
1

 
(2)(̄)̂

2
 −

h
(2)()

i´
≡ 71 + 72 + 73 + 74

We have 71 ⇒ (0  [()]) from the standard CLT. We also have 72 = (1).

The bound 73 = (1
√
 ) = (1) follows from similar arguments as in Lemma

2 of GOS. Then, the asymptotic distribution (24) follows from the remainder term

74 = (
p
 3 +

√
 2 + 1 ), which gives 74 = (1) if  = ( 3).

A.5 Estimation of the cumulative distribution function and quantiles of

the skill measures

We consider the estimation of the cumulative distribution function (cdf) Φ() =  [ ≤
] of the skill measures, for any given real argument , and of the associated quantile

function () = Φ−1(), for any given percentile level  ∈ (0 1), in the linear factor
model (2). Building on the previous section, the estimator of the cdf is the cross-sectional

average of the indicator function (̂) = 1{̂ ≤ } based on the OLS estimates ̂ for

the non-trimmed assets, namely Φ̂() =
1



X


1{̂ ≤ }1 . The quantile estimator

is the inverse function ̂() = Φ̂−1().

The next proposition extends Proposition VI.1 to the estimation of the cdf and

quantile function of the skill measures in the linear factor model (2).

Proposition VI.2 As   →∞, such that  = ( 3),

√

³
Φ̂()−Φ()− B ()

´
⇒  (0Φ()(1−Φ())) 

√


µ
̂()−() +

B (())
(())

¶
⇒ 

µ
0

(1− )

(())2

¶


with B () = 1

2
(1)(), where () = [| = ]().

As in the previous section, we can approximate the asymptotic bias through a ref-

41



erence model and estimate the asymptotic variance to get feasible results.33 With our

bivariate Gaussian reference model, we get:

(1)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

µ



− − 

2

¶
= exp

µ
 +

1

2
2

¶ −1


µ
−  − 



¶
1




µ
−  − 



¶


We can proceed similarly for the quantile case.

Proof of Proposition VI.2 : From (20), we have:  [1{̂ ≤ }] = 

∙
 +

1√

̂ ≤ 

¸
.

By using the results in Gourieroux, Laurent, and Scaillet (2000), Martin, and Wilde

(2001), Gordy (2003), Gagliardini and Gourieroux (2011), we get:



∙
 +

1√

̂ ≤ 

¸
= Φ()− 1√


()[̂ | = ]

+
1

2




(()[̂2 | = ]) + (1 )

From (21), the bias expansion is such that: [Φ̂()]−Φ() = B ()+ [1{̂ ≤ }(1− 1 )]+
(1 ). We deduce the asymptotic normality of the cdf estimator by controlling the dif-

ferent terms and applying a CLT.

We deduce the asymptotic normality of the quantile estimator by using the Bahadur

expansion for the quantile estimator at level  ∈ (0 1): ̂()−() = − 1

(())

³
Φ̂(())− 

´
.

33The asymptotic bias takes the same form as the one in Jochmans and Weidner (2018) where they

consider  parameters of interest directly drawn from a Gaussian distribution whose measurement errors

decrease at a parametric rate
√
 . In their setting, they use other arguments based on the behaviour of

the probability integral transform for their proofs.
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Table I
Relations Between the Skill Measures

This table describes different compensation schemes chosen by the funds when setting their level of fees.
Each compensation scheme yields specific predictions regarding the cross-sectional distributions of fund
fees and size, and the relation between the gross alpha and the three other skill measures (first-dollar alpha,
size coefficient, and value added).

Compensation Scheme        
Scheme I           

(optimal size)
Scheme II           

(squared optimal size)
Scheme III          
(same size)

Scheme IV          
(arbitrary size)

Fees are set such that
Managers choose    
the optimal size

Managers choose the 
squared optimal size

Managers choose the  
same average size

Funds choose an      
arbitrary size

Predictions for Size/Fees
Moderate cross-fund 
variation in fees/size

Huge size           
Tiny fees

Same Size for        
all funds

Large cross-fund 
variation in size

Does the Gross Alpha 
Measure Skill?

YES YES YES NO

First-Dollar Alpha     
(1st skill dimension)

Size Coefficient      
(2nd skill dimension)

Value Added



Table II
Summary Statistics for the Value-Weighted Portfolio of Funds

Panel A reports the average number of funds and the first four moments of the portfolio gross excess return
for all funds in the population, four styles groups (small cap, large cap, growth, value), and four
characteristic-sorted groups (low expense, high expense, low turnover, high turnover). Panel B reports the
estimated portfolio betas on the market, size, value, and momentum factors, as well as the adjusted R2

using the Cremers, Petajisto, and Zitzewitz benchmark model. All statistics are computed using monthly
data between January 1979 and December 2015.

2

Panel A: Gross Excess Return

Average     
Nb. Funds 

Mean (Ann.) Volatility (Ann.) Skewness Kurtosis

All Funds 1103 7.68 15.01 -0.8 5.4

Investment Styles

Small-cap 236 8.82 19.30 -0.6 4.9
Large-cap 436 7.77 14.77 -0.7 5.3

Growth 511 8.14 16.26 -0.8 5.3
Value 279 7.45 13.81 -0.7 5.5

Fund Characteristics
Low Expense 373 7.71 14.58 -0.8 5.3
High Expense 289 8.03 16.40 -0.8 5.2

Low Turnover 274 7.49 14.31 -0.8 5.5
High Turnover 260 8.58 16.59 -0.7 5.0

Panel B: Estimated Betas

Market Size Value Momentum Adj. R2
All Funds 0.93 0.26 -0.10 0.01 0.98

Investment Styles

Small-cap 0.98 0.81 -0.29 0.05 0.97
Large-cap 0.94 0.15 -0.06 0.01 0.99

Growth 0.95 0.33 -0.27 0.03 0.97
Value 0.92 0.13 0.19 -0.01 0.98

Fund Characteristics
Low Expense 0.92 0.21 -0.04 0.00 0.98
High Expense 0.93 0.42 -0.27 0.01 0.97

Low Turnover 0.91 0.20 0.04 -0.02 0.98
High Turnover 0.95 0.37 -0.28 0.08 0.97



Table III
Cross-Sectional Distribution of the First Dollar Alpha

The table contains the summary statistics on the cross-sectional distribution of the first dollar (fd) alpha for
all funds, four styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low
expense, high expense, low turnover, high turnover). It reports the first four moments, the proportions of
funds with a negative and positive fd alpha, and the distribution quantiles at 10% and 90%. All cross-
sectional estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds 3.5 3.6 6.2 5.8 12.5 87.5 -0.4 7.8

Investment Styles
Small-cap 5.1 3.4 10.5 1.5 4.6 95.4 1.2 9.7

Large-cap 2.0 2.4 5.9 3.9 17.7 82.3 -0.8 4.9

Growth 3.6 4.1 5.6 5.1 15.5 84.5 -0.8 8.5

Value 3.4 3.8 6.4 4.3 15.3 84.7 -0.6 8.4

Fund Characteristics
Low Expense 2.2 3.5 5.0 6.4 23.4 76.6 ‐1.7 6.1

High Expense 4.6 4.3 5.9 3.1 12.0 88.0 ‐0.4 9.9

Low Turnover 3.3 4.0 5.1 4.8 16.0 84.0 ‐0.9 8.2

High Turnover 3.8 5.0 5.5 5.4 17.2 82.8 ‐1.2 9.2

Moments Proportions (%) Quantiles (Ann.)



Table IV
Cross-Sectional Distribution of the Size Coefficient

The table contains the summary statistics on the cross-sectional distribution of the size coefficient for all
funds, four styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low
expense, high expense, low turnover, high turnover). It reports the first four moments, the proportions of
funds with a negative and positive size coefficient, and the distribution quantiles at 10% and 90%. All cross-
sectional estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds 1.5 1.5 8.1 7.2 14.1 85.9 -0.2 3.4

Investment Styles
Small-cap 2.0 1.5 8.2 3.7 9.1 90.9 0.1 4.1

Large-cap 1.0 1.0 7.4 2.7 17.1 82.9 -0.3 2.3

Growth 1.6 1.8 7.1 4.9 17.1 82.9 -0.5 3.9

Value 1.4 1.5 7.2 4.7 18.0 82.0 -0.4 3.3

Fund Characteristics
Low Expense 0.9 1.3 2.9 13.2 24.4 75.6 ‐0.6 2.4

High Expense 1.9 2.0 7.8 4.1 14.5 85.5 ‐0.3 4.3

Low Turnover 1.3 1.7 3.7 8.0 19.8 80.2 ‐0.6 3.3

High Turnover 1.7 2.2 4.6 5.7 18.5 81.5 ‐0.7 4.2

Moments Proportions (%) Quantiles (Ann.)



Table V
Cross-Sectional Distribution of the Value Added

Panel A contains the summary statistics on the cross-sectional distribution of the lifecycle value added for all
funds, four styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low
expense, high expense, low turnover, high turnover). It reports the first four moments, the proportions of
funds with a negative and positive value added, and the distribution quantiles at 10% and 90%. Panel B
provides the same information for the steady stated value added (as the fund reaches its average size). All
cross-sectional estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds 1.9 9.3 8.8 14.5 35.9 64.1 -2.3 11.1

Investment Styles
Small-cap 4.1 11.6 9.8 19.9 34.8 65.2 -2.9 15.4

Large-cap 0.0 7.8 5.5 8.8 47.8 52.2 -3.1 5.2

Growth 2.3 11.3 10.5 16.8 38.0 62.0 -3.4 14.0

Value 1.5 11.9 2.1 6.1 41.5 58.5 -3.4 8.9

Fund Characteristics
Low Expense 5.5 21.2 9.8 9.2 30.8 69.2 ‐2.5 31.1

High Expense 1.3 7.7 1.6 6.7 39.7 60.3 ‐2.9 6.9

Low Turnover 5.8 19.1 8.9 2.5 12.4 87.6 ‐0.2 26.4

High Turnover 1.0 13.3 4.2 7.8 44.9 55.1 ‐5.9 10.9

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds 7.1 15.1 9.6 21.5 27.3 72.7 -1.7 25.6

Investment Styles
Small-cap 8.4 14.2 8.0 13.7 17.8 82.2 -1.3 24.3

Large-cap 4.9 12.1 11.7 24.4 31.7 68.3 -1.6 21.0

Growth 8.8 19.4 10.1 20.8 29.2 70.8 -2.3 33.9

Value 6.7 14.3 7.0 10.8 24.7 75.3 -1.5 25.4

Fund Characteristics
Low Expense 10.3 30.8 8.3 16.2 32.5 67.5 ‐3.1 44.4

High Expense 5.5 10.3 9.0 13.5 23.0 77.0 ‐1.5 19.9

Low Turnover 12.9 28.5 8.5 12.9 16.5 83.5 ‐0.8 51.2

High Turnover 6.0 13.8 8.2 9.4 26.5 73.5 ‐2.1 23.0

Moments Proportions (%) Quantiles (Ann.)

Panel B: Steady State Value Added

Panel A: Lifecycle Value Added

Moments Proportions (%) Quantiles (Ann.)



Table VI
Optimal Versus Actual Value Added

The table compares the optimal value added with the two versions of the actual value added (lifecycle,
steady state) for all funds, four styles groups (small cap, large cap, growth, value), and four characteristic-
sorted groups (low expense, high expense, low turnover, high turnover). It reports the cross-sectional means
for the optimal and actual value added, as well as their absolute and relative difference.

Optimal Value Added Value Added Value Added Value Added Value Added Value Added
Lifecycle Steady State Lifecycle Steady State Lifecycle Steady State

All Funds 13.4 1.3 9.0 12.2 4.5 9.5 66.8

Investment Styles
Small-cap 12.7 3.1 9.1 9.6 3.6 24.2 71.5

Large-cap 12.7 -0.8 6.9 13.4 5.8 -6.2 54.3

Growth 15.0 0.9 11.0 14.1 4.1 6.1 73.0

Value 14.3 0.9 9.2 13.4 5.1 6.1 64.1

Fund Characteristics
Low Expense 23.5 4.9 14.7 18.6 8.8 20.8 62.6

High Expense 10.4 0.6 6.9 9.8 3.5 5.6 66.6

Low Turnover 27.3 4.8 16.7 22.5 10.6 17.7 61.3

High Turnover 14.2 ‐0.9 7.6 15.1 6.6 ‐6.3 53.7

Mean (Ann.) Abs. Difference Rel. Difference (%)



Table VII
Fund Fees and Size

The table contains the summary statistics on the cross-sectional distribution of fund fees and size for all
funds, four styles groups (small cap, large cap, growth, value), and four characteristic-sorted groups (low
expense, high expense, low turnover, high turnover). It reports the mean, volatility, and the distribution
quantiles at 10% and 90%.

Fees Size Fees Size Fees Size Fees Size

All Funds 1.25 753 0.41 2076 0.79 43 1.80 1645

Investment Styles
Small-cap 1.37 410 0.36 673 0.97 48 1.87 907

Large-cap 1.16 1068 0.39 2953 0.73 45 1.71 2298

Growth 1.30 769 0.41 2059 0.87 47 1.85 1682

Value 1.18 980 0.38 2690 0.74 47 1.66 1851

Fund Characteristics
Low Expense 0.82 1411 0.18 3563 0.56 63 1.01 2958

High Expense 1.73 344 0.28 727 1.44 36 2.10 785

Low Turnover 1.14 1475 0.37 3980 0.72 59 1.58 3246

High Turnover 1.30 650 0.37 1272 0.89 56 1.79 1457

Mean Volatility Quantile 10% Quantile 90%



Table VIII
Cross-Sectional Distribution of Gross Alpha

The table contains the summary statistics on the cross-sectional distribution of the gross alpha for all funds,
four styles groups (small-cap, large-cap, growth, value), and four characteristic-sorted groups (low-expense,
high-expense, low-turnover, high turnover). It reports the first four moments, the proportions of funds with a
negative and positive gross alpha, and the distribution quantiles at 10% and 90%. All cross-sectional
estimates are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Moments Proportions (%) Quantiles (Ann.)

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds 0.8 1.3 3.2 1.2 27.8 72.2 -0.9 2.7

Investment Styles

Small-cap 1.6 1.2 6.4 -1.9 12.3 87.7 -0.4 3.7

Large-cap 0.3 0.9 1.6 3.1 36.0 64.0 -0.9 1.7

Growth 0.8 1.5 2.6 1.7 31.6 68.4 -1.3 2.9

Value 1.0 1.6 4.2 2.1 26.5 73.5 -1.0 3.0

Fund Characteristics

Low Expense 0.4 1.4 2.4 2.7 38.8 61.2 ‐1.3 2.0

High Expense 1.1 1.8 2.9 3.3 25.2 74.8 ‐1.2 3.6

Low Turnover 0.9 1.5 2.8 0.8 27.8 72.2 ‐1.1 3.0

High Turnover 0.7 1.9 2.8 3.1 34.8 65.2 ‐1.6 3.1



Table IX
Cross-Sectional Distribution of Net Alpha

The table contains the summary statistics on the cross-sectional distribution of the net alpha for all funds,
four styles groups (small-cap, large-cap, growth, value), and four characteristic-sorted groups (low-expense,
high-expense, low-turnover, high turnover). It reports the first four moments, the proportions of funds with a
negative and positive net alpha, and the distribution quantiles at 10% and 90%. All cross-sectional estimates
are adjusted for bias (smoothing and EIV) using our non-parametric approach.

Moments Proportions (%) Quantiles (Ann.)

Mean 
(Ann.)

Volatility 
(Ann.)

Skewness Kurtosis
Negative 

Skill
Positive 

Skill
10% 90%

All Funds -0.5 1.3 -2.8 2.2 63.5 36.5 -2.2 1.4

Investment Styles

Small-cap 0.2 1.3 -0.6 0.8 46.1 53.9 -1.8 2.4

Large-cap -0.8 0.9 -5.3 1.6 79.1 20.9 -2.0 0.5

Growth -0.5 1.6 -2.8 2.8 64.3 35.7 -2.6 1.6

Value -0.2 1.5 0.1 2.0 56.0 44.0 -2.1 1.7

Fund Characteristics

Low Expense ‐0.4 1.3 ‐1.0 2.4 63.4 36.6 ‐2.1 1.2

High Expense ‐0.6 1.9 ‐2.5 3.8 61.1 38.9 ‐3.0 2.0

Low Turnover ‐0.3 1.5 ‐1.7 1.6 56.5 43.5 ‐2.2 1.8

High Turnover ‐0.6 2.0 ‐1.3 3.3 62.8 37.2 ‐2.8 1.8



Figure 1
Bias for the First Dollar Alpha

This figure plots the two bias components (smoothing and Error-in-Variable (EIV)) for the cross-sectional
distribution of the first dollar (fd) alpha. Each component is obtained from the normal reference model whose
five parameters are estimated using the estimated gross alpha and its asymptotic variance for all funds in
the population (n=2,265). The estimated values for the mean and volatility of the true fd alpha are equal to
0.28% and 0.42% per month. The mean and volatility of the log of the asymptotic variance are equal to -6.0
and 1.1. Finally, the correlation coefficient is equal to 0.27.
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Figure 2
Cross-sectional Distribution of the First Dollar Alpha: 

Analysis across Fund Groups

Panel A plots the cross-sectional densities of the first dollar alpha for small cap and large cap funds. Panel B
compares growth and value funds. Panel C compares low expense and high expense funds. Finally, Panel
D compares low turnover and high turnover funds. All the estimated densities are adjusted for bias
(smoothing and EIV) using our non-parametric approach.
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Figure 3
Cross-sectional Distribution of the  Size Coefficient: 

Analysis across Fund Groups

Panel A plots the cross-sectional densities of the size coefficient for small cap and large cap funds. Panel B
compares growth and value funds. Panel C compares low expense and high expense funds. Finally, Panel
D compares low turnover and high turnover funds. All the estimated densities are adjusted for bias
(smoothing and EIV) using our non-parametric approach..
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