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Abstract

Recent innovations in statistical technology, including in predicting creditworthiness, have
sparked concerns about differential impacts across categories such as race and gender. We
show theoretically that as statistical technology improves, distributional consequences de-
pend on how changes in functional forms interact with cross-category distributions of ob-
servable characteristics. Such changes can come from greater flexibility to uncover structural
relationships between outcomes and observables, or from an improved ability to triangulate
otherwise excluded/unobserved characteristics such as borrower race. Using detailed admin-
istrative data on US mortgages, we predict default using traditional logit models and popular
machine learning techniques, and embed their predictions in a simple equilibrium model of
credit provision and pricing to analyze both extensive margin (exclusion) and intensive mar-
gin (rates) impacts. We find that Black and Hispanic borrowers are disproportionately less
likely to gain from the introduction of the new technology, in terms of having lower predicted
default probabilities. We predict that in credit market equilibrium, machine learning models
slightly increase credit provision to all race groups, but increase disparity in rates between
and within groups; these changes are primarily attributable to greater flexibility.



1 Introduction

In recent years, new predictive statistical methods and machine learning techniques have been

rapidly adopted by businesses seeking profitability gains in a broad range of industries.2 The

pace of adoption of these technologies has prompted concerns that society has not carefully

evaluated the risks associated with their use, including the possibility that any gains arising

from better statistical modeling may not be evenly distributed.3 In this paper, we study the

distributional consequences of the adoption of machine learning techniques in the important

domain of household credit markets. We do so by developing simple theoretical frameworks

to analyze these issues, and by using a structural model to evaluate counterfactuals using a

large administrative dataset of loans in the US mortgage market.

The essential insight of our paper is that a more sophisticated statistical technology

(in the sense of reducing predictive mean squared error) will, by definition, produce pre-

dictions with greater variance. Put differently, improvements in predictive technology act

as mean-preserving spreads for predicted outcomes — in our application, predicted default

propensities on loans.4 This means that there will always be some borrowers considered

less risky by the new technology (“winners”), while other borrowers will be deemed riskier

(“losers”), relative to their position in equilibrium under the pre-existing technology. The

key question is then how these winners and losers are distributed across societally important

categories such as race, income, or gender.

We attempt to provide clearer guidance to identify the specific groups most likely to win

or lose from the change in technology. To do so, we first consider the decision of a lender

who uses a single exogenous variable (e.g., a borrower characteristic such as income) to pre-

dict default. We find that winning or losing depends on both the functional form of the

2See, for example, Agrawal et al. (2018). Academic economists also increasingly rely on such techniques
(e.g., Belloni et al., 2014; Varian, 2014; Kleinberg et al., 2017; Mullainathan and Spiess, 2017; Chernozhukov
et al., 2017; Athey and Imbens, 2017).

3See, for example, O’Neil (2016), Hardt et al. (2016), Kleinberg et al. (2016), and Kleinberg et al. (2018).
4Academic work applying machine learning to credit risk modeling includes Khandani et al. (2010) and

Sirignano et al. (2017).
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new technology, and the differences in the distribution of the characteristics across groups.

Perhaps the simplest way to understand this point is to consider an economy endowed with

a primitive prediction technology which simply uses the mean level of a single characteris-

tic to predict default. In this case, the predicted default rate will just be the same for all

borrowers, regardless of their particular value of the characteristic. If a more sophisticated

linear technology which identifies that default rates are linearly decreasing in the character-

istic becomes available to this economy, groups with lower values of the characteristic than

the mean will clearly be penalized following the adoption of the new technology, while those

with higher values will benefit from the change. Similarly, a convex quadratic function of

the underlying characteristic will penalize groups with higher variance of the characteristic,

and so forth.

We then extend this simple theoretical intuition, noting two important mechanisms

through which such unequal effects could arise. To begin with, we note that default out-

comes can generically depend on both “permissible” observable variables such as income or

credit scores, as well as on “restricted” variables such as race or gender. As the descriptors

indicate, we consider the case in which lenders are prohibited from using the latter set of

variables to predict default, but can freely apply their available technology to the permissible

variables.

One possibility is that the additional flexibility available to the more sophisticated tech-

nology allows it to more easily recover the structural relationships connecting permissible

variables to default outcomes. Another possibility is that the structural relationship between

permissible variables and default is perfectly estimated by the primitive technology, but the

more sophisticated technology can more effectively triangulate the unobserved restricted

variables using the observed permissible variables. In this latter case, particular groups are

penalized or rewarded based on realizations of the permissible variables, which are more

accurately combined by the more sophisticated technology to estimate the influence of the

restricted variables.
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Our theoretical work is helpful to build intuition, but credit default forecasting generally

uses large numbers of variables, and machine learning involves highly nonlinear functions.

This means that it is not easy to identify general propositions about the cross-group joint

distribution of characteristics and the functional form predicting default. Indeed, the impact

of new technology could be either negative or positive for any given group of households —

there are numerous real-world examples of new entrants with more sophisticated technol-

ogy more efficiently screening and providing credit to members of groups that were simply

eschewed by those using more primitive technologies.5 Armed with the intuition from our

simple models, we therefore go to the data to understand the potential effects of machine

learning on an important credit market, namely, the US mortgage market. We rely on a

large administrative dataset of close to 10 million US mortgages originated between 2009 and

2013 in which we observe borrowers’ race, ethnicity, and gender, as well as mortgage charac-

teristics and default outcomes following loan origination. We estimate a set of increasingly

sophisticated statistical models to predict default using these data, beginning with a simple

logistic regression of default outcomes on borrower and loan characteristics, and culminating

in a Random Forest machine learning model (Ho, 1998; Breiman, 2001).6

We confirm that the machine learning technology delivers significantly higher out-of-

sample predictive accuracy for default than the simpler logistic models. However, we find

that predicted default propensities across race and ethnic groups are very different under the

more sophisticated technology than under the simple technology. In particular, while a large

fraction of borrowers belonging to the majority group (e.g., White non-Hispanic) gain, that

is, experience lower estimated default propensities under the machine learning technology

than the less sophisticated logit technology, these benefits do not accrue to the same degree

to some minority race and ethnic groups (e.g., Black and Hispanic borrowers).

We propose simple empirical measures to try to bound the extent to which flexibility or

5The monoline credit card company CapitalOne is one such example of a firm that experienced remarkable
growth in the nineties by more efficiently using demographic information on borrowers.

6We also employ the eXtreme Gradient Boosting (XGBoost) model (Chen and Guestrin, 2016), which
delivers very similar results to the Random Forest. We therefore focus on describing the results from the
Random Forest model, and provide some details on XGBoost in the online appendix.
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triangulation is responsible for these results, by comparing the performance of the näıve and

sophisticated statistical models when race and ethnicity are included and withheld from the

information set used to predict default. We find that the majority of the predictive accuracy

gains from the more sophisticated machine learning model are attributable to the increased

flexibility of the model, with 8% or less attributable to pure triangulation. This finding

suggests that simply prohibiting certain variables as predictors of default propensity will

likely become increasingly ineffective as technology improves.7 While in some measure this

is due to the ability of nonlinear methods to triangulate racial identity,8 the main effect seems

to arise from the fact that such regulations cannot protect minorities against the additional

flexibility conferred by the new technology.

How might these changes in predicted default propensities across race and ethnic groups

translate into actual outcomes, i.e., whether different groups of borrowers will be granted

mortgages, and the interest rates that they will be asked to pay when granted mortgages?

In an attempt to evaluate these questions, we embed the statistical models in a simple

equilibrium model of credit provision in a competitive credit market.9

When evaluating counterfactual equilibrium outcomes and performing comparative stat-

ics with respect to underlying technologies, we face a number of obvious challenges to identi-

fication. These arise from the fact that the data that we use to estimate the default models

were not randomly generated, but rather, a consequence of the interactions between bor-

7In practice, compliance with the letter of the law has usually been interpreted to mean that differentiation
between households using “excluded” characteristics such as race or gender is prohibited (see, e.g., Ladd,
1998).

8We also find that the machine learning models are far better than the logistic models at predicting
race using borrower information such as FICO score and income. This is reminiscent of recent work in the
computer science literature which shows that anonymizing data is ineffective if sufficiently granular data on
characteristics about individual entities is available (e.g., Narayanan and Shmatikov, 2008).

9We consider a model in which lenders bear the credit risk on mortgage loans (which is the key driver
of their accept/reject and pricing decisions) and are in Bertrand competition with one another. The US
mortgage market over the period covered by our sample is one in which the vast majority of loans are insured
by government-backed entities that also set underwriting criteria and influence pricing. This introduces some
variance between our model and the current state of the market. That said, our equilibrium exercise can
be viewed as evaluating the effects of the changes in default probabilities that we find on credit provision
along the intensive and extensive margins. This is of interest whether new statistical techniques are used by
private lenders, or by a centralized entity changing its approach to setting underwriting criteria.
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rowers and lenders who may have had access to additional information whilst making their

decisions.

We confront these challenges in a number of ways. First, we focus on a loan origination

period which is well after the financial crisis. Post-crisis, mortgage underwriting operates on

fairly tight observable criteria that are set by the government-sponsored enterprises (GSEs)

Fannie Mae and Freddie Mac, as well as the Federal Housing Administration (FHA), which

jointly insure most loans. Second, we restrict our analysis to securitized mortgages which

are backed by Fannie Mae and Freddie Mac and originated with full documentation, as they

are less likely to suffer from selection by lenders on unobservable borrower characteristics;

instead, lenders mainly focus on whether a borrower fulfills the underwriting criteria set by

the GSEs.10 And finally, we undertake a bias adjustment of our estimated sensitivities of

default to changes in interest rates, by computing an adjustment factor based on credibly

causal estimates of these sensitivities estimated by Fuster and Willen (2017).

We compute counterfactual equilibria associated with each statistical technology, and

then compare the resulting equilibrium outcomes with one another to evaluate comparative

statics on outcomes across groups. We find that the machine learning model appears to

provide a slightly larger number of borrowers access to credit, and marginally reduces dis-

parity in acceptance rates (i.e., the extensive margin) across race and ethnic groups in the

borrower population. However, the story is different on the intensive margin — the cross-

group disparity of equilibrium rates increases under the machine learning model relative to

the less sophisticated logistic regression models. This is accompanied by a substantial in-

crease in within-group dispersion in equilibrium interest rates as technology improves. This

rise is virtually double the magnitude for Black and White Hispanic borrowers under the

machine learning model than for the White non-Hispanic borrowers, i.e., Black and Hispanic

borrowers get very different rates from one another under the machine learning technology.

For a risk-averse borrower behind the veil of ignorance, this introduces a significant penalty

10In influential work, Keys et al. (2010) argue that there are discontinuities in lender screening at FICO
cutoffs that determine the ease of securitization, but only for low-documentation loans (where soft informa-
tion is likely more important), not for full-documentation loans such as the ones we consider.

5



associated with being a minority.

Overall, the picture is mixed. On the one hand, the machine learning model is a more

effective model, predicting default more accurately than the more primitive technologies.

What’s more, it does appear to provide credit to a slightly larger fraction of mortgage

borrowers, and to slightly reduce cross-group dispersion in acceptance rates. However, the

main effects of the improved technology are the rise in the dispersion of rates across race

groups, as well as the significant rise in the dispersion of rates within race groups, especially

for Black and Hispanic borrowers.

Our focus in this paper is on the distributional impacts of changes in technology rather

than on explicit taste-based discrimination (Becker, 1971) or “redlining,” which seeks to use

geographical information to indirectly differentiate on the basis of excluded characteristics,

and which is also explicitly prohibited.11 However, similarly in spirit to this work, we also

seek a clearer understanding of the sources of inequality in household financial markets.12

Our work is also connected more broadly to theories of statistical discrimination,13 though

we do not model lenders as explicitly having access to racial and ethnic information when

estimating borrowers’ default propensities.

The organization of the paper is as follows. Section 2 sets up a simple theory framework

to understand how improvements in statistical technology can affect different groups of

households in credit markets, and describes the two sources (flexibility and triangulation)

of unequal effects. Section 3 discusses the US mortgage data that we use in our work.

Section 4 introduces the default forecasting models that we employ on these data, describes

11Bartlett et al. (2017) study empirically whether “FinTech” mortgage lenders in the US appear to dis-
criminate more across racial groups. Buchak et al. (2017) and Fuster et al. (2018) study other aspects of
FinTech lending in the US mortgage market.

12These issues have been a major focus on work in household financial markets. In mortgages and housing,
see, e.g., Berkovec et al. (1994, 1998), Ladd (1998), Ross and Yinger (2002), Ghent et al. (2014), and Bayer
et al. (2017). In insurance markets, see, e.g., Einav and Finkelstein (2011), Chetty and Finkelstein (2013),
Bundorf et al. (2012), and Geruso (2016). Also related, Pope and Sydnor (2011) consider profiling in
unemployment benefits use.

13See Fang and Moro (2010) for an excellent survey, and the classic references on the topic, including
Phelps (1972) and Arrow (1973).
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how predicted default probabilities vary across groups, and computes measures of flexibility

and triangulation in the data. Sections 5 sets up our equilibrium model of credit provision

under different technologies, and discusses how the changes in default predictions affect both

the intensive and extensive margins of credit provision. Section 6 concludes. An appendix

included with the paper contains a few proofs, and a more extensive online appendix contains

numerous auxiliary analyses and robustness checks.

2 A Simple Theory Framework

Consider a lender who wishes to predict the probability of default, y ∈ [0, 1], of a loan with

a vector of observable characteristics x, which includes both borrower characteristics (e.g.,

income, credit score) and contract terms (e.g. loan size, interest rate). We start by assuming

that the lender takes the contract terms as given when drawing inferences, and study how

these inferences are affected by changes in the statistical technology that the lender is able to

apply. In a later section, we allow interest rates to be determined in competitive equilibrium,

and also consider how changes in technology affect equilibrium rates.

The lender wishes to find a function ŷ = P̂ (x) ∈ M which maps the observable char-

acteristics x into a predicted y. We represent the statistical technology that the lender can

use to find this function as M, which comprises a class of possible functions that can be

chosen.14 We say that a statistical technology M2 is better than M1 if it gives the lender a

larger set of functional options, i.e., M1 ⊂M2.15

We assume that the lender chooses the best predictor in a mean-square error sense,

14For example, if linear regression technology is all that the lender has available, then M is the space of
linear functions of x.

15Throughout, we focus on improvements in prediction technology given a fixed information set; we do
not consider the use by lenders of newly available information sources, such as borrowers’ “digital footprint”
(Berg et al., 2018).
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subject to the constraint imposed by the available statistical technology:

P̂ (x|M) = arg min
f
E[(f(x)− y)2] subject to f ∈M. (1)

We note that the prediction P̂ (x|M) is itself a random variable, since it depends on the

realization of characteristics x.

We consider the impact of improvements in technology on predictions, and find that such

improvements necessarily leads to predictions that are more disperse:

Lemma 1. If M2 is a better statistical technology than M1, then P̂ (x|M2) is a mean-

preserving spread of P̂ (x|M1):

P̂ (x|M2) = P̂ (x|M1) + u,

where E[u] = 0 and Cov(u, P̂ (x|M1)) = 0.

Proof: See appendix.

This result is intuitive: by definition, improvements in technology will yield predictions

with a mean-square error that is less than or equal to the pre-existing predictions. These

new predictions ŷ will track the true y more closely, and will therefore be more disperse on

average. Moreover, this spread is mean-preserving, because optimal predictors are unbiased

and will match the true y on average regardless of technology.16

Lemma 1 is very simple, but makes it clear that there will be both winners and losers when

better technology becomes available in credit markets, motivating the distributional concerns

at the heart of our analysis. Better technology shifts weight from average predicted default

probabilities to more extreme values. As a result, there will be borrowers with characteristics

x that are treated as less risky under the new technology, and therefore experience better

16In practice, machine learning algorithms trade off increases in bias against reductions in the variance of
the out-of-sample forecast (see, e.g., James et al., 2013). While we do not discuss how this affects our simple
theory in this section, our empirical estimates reflect this feature of the algorithms.
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credit market outcomes, while borrowers with other characteristics will be considered to be

riskier.

However, Lemma 1 is not specific about the identities of those who gain and lose in credit

markets when statistical technology improves. This is a complex problem, and so to build

intuition, we analyze the simple case where lenders predict default based on a single variable

x.

2.1 Unequal Effects of Better Technology

We write g for a vector of dummy variables indicating group membership (e.g., borrowers’

race). We continue to assume that the lender can use only observable characteristics x for

prediction, and is prohibited from using g directly as an explanatory variable. For simplicity,

we suppose that the primitive technology M1 is the class of linear functions of x.

Although group membership g is excluded from prediction, better statistical technology

can nevertheless have unequal impacts across groups. Figure 1 gives an example. There

are two groups of borrowers: Blue and Red. The two bell curves show the distribution of

characteristics x for each group. Specifically, x has the same mean a in both groups, but

higher variance in the Blue group.

Suppose that the linear predictor of default P̂lin(x) is a decreasing function of x (e.g.,

if x were the income or credit score of the borrower). The nonlinear predictor P̂nl(x),

associated with more sophisticated statistical technology, is a convex quadratic function

of x. The figure shows that in this example, better technology leads to higher predicted

default rates (P̂nl(x) > P̂lin(x)) when x is far from its mean a in either direction. It follows

that Blue borrowers tend to be adversely affected by new technology. This is because their

characteristics x are more variable and hence more likely to lie in the tails of the distribution,

which are penalized by nonlinear technology.

This intuition generalizes beyond the quadratic case. In the appendix, we formalize this
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insight by showing that the effect of introducing a more sophisticated technology depends

on two factors, namely, the higher-order moments of borrower characteristics in each group,

and the higher-order derivatives of predictions under sophisticated technology.17

Figure 1: Unequal Effects of Better Technology

x

Default
Probability

P̂nl

P̂lin

βx+ γgr

βx+ γgb

a

2.2 Sources of Unequal Effects

To better understand the sources of unequal effects, it is instructive to consider two special

cases. First, suppose that the true data-generating process for y is

y = P (x) + ε, (2)

where P (x) is a possibly nonlinear, deterministic function of x, and ε is independent of both

x and g.

In this case, group membership g has no direct impact on default risk. Nevertheless, this

17For example, if the distribution of x|g is right-skewed, and the third derivative of P̂nl(x) is positive, then
the introduction of P̂nl(x) relative to the previously available technology will penalize the right tail of x,
causing members of subgroup g to have higher predicted default rates. Members of g would therefore lose
out under the new technology. To take another example, if the distribution of x|g is fat-tailed, and the fourth
derivative of P̂nl(x) is negative, then the new predictions reward both tails of the conditional distribution,
and members of g will be relatively better off, and so forth.
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situation can give rise to unequal effects when a new technology is introduced, as depicted

in Figure 1.

To see this, make the additional assumption that in equation (2), the true data-generating

function P (x) is quadratic. The new technology, which permits quadratic functions, obvi-

ously better approximates the true function, and the estimate P̂nl shown in the figure creates

unequal effects across groups g. In this case, the flexibility of new technology permits it to

better capture the structural relationship between x and y, and is the underlying source of

the unequal effects.

Second, consider another case in which the true data-generating process is linear:

y = β · x+ γ · g + ε, (3)

where ε is again independent of x and g. In this case, a linear model achieves the best

possible prediction of default if g is available to include as an explanatory variable. The

introduction of more sophisticated technology cannot by construction have an impact purely

due to its flexibility.

In this case, better technology can still have an unequal impact if g is restricted as

an explanatory variable. Intuitively, better technology can use nonlinear functions of x

to more effectively capture the influence of the omitted variable g. The unequal effects of

more sophisticated technology would then arise through more efficient triangulation of group

membership.

Triangulation can give rise to unequal effects that are similar to those induced by flex-

ibility. Figure 2 provides an example where true default risk is higher for the blue group.

In the figure, we assume that the group-conditional distributions are exactly the same as in

Figure 1. Since there is no linear correlation between x and g, the linear prediction P̂lin(x)

cannot use x to capture the influence of g and, as a result, it is equal to the population-

weighted average of the true Blue and Red default probabilities (the dashed straight line in
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the figure).

In contrast, the quadratic prediction penalizes the Blue group: since extreme realizations

of x are more likely to come from Blue borrowers, the more sophisticated technology as-

signs higher predicted default probabilities to these extreme realizations of x than to more

moderate realizations of x. We provide a formal example of this mechanism in the appendix.

Figure 2: Triangulation

x

Default
Probability

P̂nl

P̂lin

βx+ γgred

βx+ γgblue

a

2.3 Discussion

The main insights from our simple theoretical analysis are as follows. First, Lemma 1 clearly

predicts that there will generally be both winners and losers from an improvement in sta-

tistical technology. Second, we have argued that better technology can have unequal effects

across borrower groups, even if lenders are not allowed to include group membership g in

predictive modeling. One way this might occur is through the additional flexibility of the

new technology to uncover nonlinear, structural relationships between observable charac-

teristics and default rates. Another is that better technology can triangulate unobservable

group membership using nonlinear functions of x. These impacts will be jointly determined

by the shape of the underlying distribution of x|g, and the differences in shape between the
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new and old functional forms of the predictive equations.

From a positive perspective, Figures 1 and 2 make clear that flexibility and triangulation

can both result in very similar observed unequal effects. The distinction is still important,

however, from a normative perspective. For example, if default is truly independent of

g, unequal impacts of the introduction of more flexible technology could still arise despite

the presence of regulations prohibiting the use of g in prediction. These would simply

be on account of an improved ability to uncover structural relationships between permitted

observables and y. In contrast, if default is in reality associated with g, unequal impacts could

arise from a better ability of the technology to triangulate the omitted variable. These two

scenarios would result in a very different set of conversations — triangulation might lead us

to consider alternative regulations that are fit for purpose when lenders use highly nonlinear

functions, whereas flexibility might push us in a different direction, towards discussing the

underlying sources of cross-group differences in the distributions of observable characteristics.

We have thus far considered two special cases: in the pure flexibility case, group member-

ship g had no predictive power for default conditional on the ability to estimate sufficiently

flexible functions of x, while in the pure triangulation case, nonlinear functions of x were

entirely unable to add predictive power conditional on g. In reality, we should consider the

data generating process as one which permits both flexibility and triangulation to generate

unequal effects on groups. In Section 4, we define empirical measures of flexibility and tri-

angulation to attempt to bound the extent to which these two sources drive unequal effects

observed in the data.

A shortcoming of our discussion thus far is that it has not touched upon the more realistic

scenario of endogenously assigned contract characteristics, meaning that we cannot at this

stage predict how changing probabilities of default translate into changes in interest rates, or

exclusion of some borrowers from the credit market. We return to this issue in some detail

after the next section.

Finally, it is worth re-emphasizing that the intuition we have developed using specific
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functional forms (e.g., convex quadratic) could well be misleading in terms of the true pat-

terns that exist in the data. For example, it might well be the case that the new technology

allows a lender to make better predictions through the ability to identify good credit risks

within a minority group previously assigned uniformly high predicted default rates under

the old technology. If so, we would see that the introduction of new technology benefits the

minority group on average, though dispersion of outcomes within the group would rise as a

result.18 Ultimately, while we have a better understanding of the underlying forces at work,

uncovering the identities of the winners and losers will require moving to the data.

In the next section, therefore, we discuss how predicted default probabilities estimated

in the data vary with statistical technology, and concentrate on the distributional impacts

of these technologies across race and ethnicity-based subgroups of the population.

3 US Mortgage Data

To study how these issues may play out in reality, we use high-quality administrative data

on the US mortgage market, which results from merging two loan-level datasets: (i) data col-

lected under the Home Mortgage Disclosure Act (HMDA), and (ii) the McDashTM mortgage

servicing dataset which is owned and licensed by Black Knight.

HMDA data has traditionally been the primary dataset used to study unequal access to

mortgage finance by loan applicants of different races, ethnicities, or genders; indeed “identi-

fying possible discriminatory lending patterns” was one of the main purposes in establishing

HMDA in 1975.19 HMDA reporting is required of all lenders above a certain size threshold

that are active in metropolitan areas, and the HMDA data are thought to cover 90% or

more of all first-lien mortgage originations in the US (e.g., National Mortgage Database,

2017; Dell’Ariccia et al., 2012).

18The case of the monoline credit card company, CapitalOne, more efficiently using demographic informa-
tion during the decade from 1994 to 2004 is evocative in this context. See, for example, Wheatley (2001).

19See https://www.ffiec.gov/hmda/history.htm.
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HMDA lacks a number of key pieces of information that we need for our analysis. Loans in

this dataset are only observed at origination, so it is impossible to know whether a borrower

in the HMDA dataset ultimately defaulted on an originated loan. Moreover, a number of

borrower characteristics useful for predicting default are also missing from the HMDA data,

such as the credit score (FICO), loan-to-value ratio (LTV), the term of the issued loan, and

information on the cost of a loan (this is only reported for “high cost” loans).20

The McDashTM dataset from Black Knight contains much more information on the con-

tract and borrower characteristics of loans, including mortgage interest rates. Of course,

these data are only available for originated loans, which the dataset follows over time. The

dataset also contains a monthly indicator of a loan’s delinquency status, which has made it

one of the primary datasets that researchers have used to study mortgage default (e.g., Elul

et al., 2010; Foote et al., 2010; Ghent and Kudlyak, 2011).

A matched dataset of HMDA and McDash loans is made centrally available to users

within the Federal Reserve System. The match is done by origination date, origination

amount, property zipcode, lien type, loan purpose (i.e., purchase or refinance), loan type

(e.g., conventional or FHA), and occupancy type. We only retain loans which can be uniquely

matched between HMDA and McDash, and we discuss how this affects our sample size below.

Our entire dataset extends from 2009-2016, and we use these data to estimate three-

year probabilities of delinquency (i.e., three or more missed payments, also known as “90-

day delinquency”) on all loans originated between 2009 and 2013.21 We thus focus on

loans originated after the end of the housing boom, which (unlike earlier vintages) did not

experience severe declines in house prices. Indeed, most borrowers in our data experienced

positive house price growth throughout the sample period. This means that delinquency is

likely driven to a large extent by idiosyncratic borrower shocks rather than macro shocks,

20Bhutta and Ringo (2014) and Bayer et al. (2017) merge HMDA data with information from credit
reports and deeds records in their studies of racial and ethnic disparities in the incidence of high-cost
mortgages. Starting with the 2018 reporting year, additional information will be collected under HMDA;
see http://files.consumerfinance.gov/f/201510 cfpb hmda-summary-of-reportable-data.pdf for details.

21We do so in order to ensure that censoring of defaults affects all vintages similarly for comparability.
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mapping more closely to our theoretical discussion.

For the origination vintages from 2009-2013, our HMDA-McDash dataset corresponds to

45% of all loans in HMDA. This fraction is driven by the coverage of McDash (corresponding

to 73% of HMDA originations over this period) and the share of these McDash loans that

can be uniquely matched to the HMDA loans (just over 60%). For our analysis, we impose

some additional sample restrictions. We only retain conventional (non-government issued)

fixed-rate first-lien mortgages on single-family and condo units, with original loan term of

10, 15, 20, or 30 years. We furthermore only keep loans with original LTV between 20

and 100 percent, a loan amount of US$ 1 million or less, and borrower income of US$

500,000 or less. We also drop observations where the occupancy type is marked as unknown,

and finally, we require that the loans reported in McDash have data beginning no more

than 6 months after origination, which is the case for the majority (about 83%) of the

loans in McDash originated over our sample period. This requirement that loans are not

excessively “seasoned” before data reporting begins is an attempt to mitigate any selection

bias associated with late reporting.

There are 42.2 million originated mortgages in the category of 1-4 family properties in

the 2009-2013 HMDA data. The matched HMDA-McDash sample imposing only the non-

excessive-seasoning restriction contains 16.84 million loans, of which 72% are conventional

loans. After imposing all of our remaining data filters on this sample, we end up with 9.37

million loans. For all of these loans, we observe whether they ever enter serious delinquency

over the first three years of their life — this occurs for 0.74% of these loans.

HMDA contains separate identifiers for race and ethnicity; we focus primarily on race,

with one important exception. For White borrowers, we additionally distinguish between

Hispanic/Latino White borrowers and non-Hispanic White borrowers.22 The number of

22The different race codes in HMDA are: 1) American Indian or Alaska Native; 2) Asian; 3) Black or
African American; 4) Native Hawaiian or Other Pacific Islander; 5) White; 6) Information not provided by
applicant in mail, Internet, or telephone application; 7) Not applicable. We combine 1) and 4) due to the
low number of borrowers in each of these categories; we also combine 6) and 7) and refer to it as “unknown”.
Ethnicity codes are: Hispanic or Latino; Not Hispanic or Latino; Information not provided by applicant in
mail, Internet, or telephone application; Not applicable. We only classify a borrower as Hispanic in the first
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borrowers in each group, along with descriptive statistics of key observable variables are

shown in Table 1. The table shows that there are clear differences between the (higher)

average and median FICO scores, income levels, and loan amounts for White non-Hispanic

and Asian borrowers relative to the Black and White Hispanic borrowers. Moreover, the

table shows that there are higher average default rates (as well as interest rates and the

spreads at origination over average interest rates, known as “SATO”) for the Black and

White Hispanic borrowers. They also have substantially higher variance in FICO scores

than the White Non-Hispanic group. Intuitively, such differences in characteristics make

these minority populations look different from the “representative” borrower discussed in

the single-characteristic model of default probabilities in the theory section. Depending on

the shape of the functions under the new statistical technology, these differences will either be

penalized or rewarded (in terms of estimated default probabilities) under the new technology

relative to the old.

It is worth noting one point regarding our data and the US mortgage market more broadly.

The vast majority of loans in the sample (over 90%) end up securitized by the government-

sponsored enterprises (GSEs) Fannie Mae or Freddie Mac, which insure investors in the

resulting mortgage-backed securities against the credit risk on the loans. Furthermore, these

firms provide lenders with underwriting criteria that dictate whether a loan is eligible for

securitization, and (at least partly) influence the pricing of the loans.23 As a result, the

lenders retain originated loans in portfolio (i.e., on balance sheet) and thus directly bear the

risk of default for less than 10% of the loans in our sample.

As we discuss later in the paper, when we study counterfactual equilibria associated

with new statistical technologies, this feature of the market makes it less likely that there is

selection on unobservables by lenders originating GSE securitized loans, which is important

for identification. Nevertheless, in this section of the paper, we estimate default probabilities

case, and only make the distinction for White borrowers.
23For instance, in addition to their flat “guarantee fee” (i.e., insurance premium), the GSEs charge so-

called “loan-level price adjustments” that depend on borrower FICO score, LTV ratio, and some other loan
characteristics.
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Table 1: Descriptive Statistics, 2009-2013 Originations

Group FICO Income LoanAmt Rate (%) SATO (%) Default (%)

Mean 764 122 277 4.24 -0.07 0.42
Asian Median 775 105 251 4.25 -0.05 0.00
(N=574,812) SD 40 74 149 0.71 0.45 6.49

Mean 735 91 173 4.42 0.11 1.88
Black Median 744 76 146 4.50 0.12 0.00
(N=235,673) SD 58 61 109 0.71 0.48 13.57

Mean 746 90 187 4.36 0.07 0.99
White Hispanic Median 757 73 159 4.38 0.07 0.00
(N= 381,702) SD 52 63 115 0.71 0.47 9.91

Mean 761 110 208 4.33 -0.00 0.71
White Non-Hispanic Median 774 92 178 4.38 0.02 0.00
(N=7,134,038) SD 45 73 126 0.69 0.44 8.37

Native Am, Alaska, Mean 749 97 204 4.39 0.04 1.12
Hawaii/Pac Isl Median 761 82 175 4.45 0.04 0.00
(N=59,450) SD 51 65 123 0.70 0.46 10.52

Mean 760 119 229 4.38 0.00 0.79
Unknown Median 773 100 197 4.50 0.02 0.00
(N=984,310) SD 46 78 141 0.68 0.44 8.85

Note: Income and loan amount are measured in thousands of USD. SATO stands for “spread at origination”

and is defined as the difference between a loan’s interest rate and the average interest rate of loans originated

in the same calendar quarter. Default is defined as being 90 or more days delinquent at some point over the

first three years after origination. Data source: HMDA-McDash matched dataset of fixed-rate mortgages

originated over 2009-2013.

using both GSE-securitized and portfolio loans, in the interests of learning about default

probabilities using as much data as possible — as we believe a profit maximizing lender

would also seek to do.

In the next section we estimate increasingly sophisticated statistical models to predict

default in the mortgage dataset. We then evaluate how the predicted probabilities of default

from these models vary across race- and ethnicity-based groups in the population of mortgage

borrowers.
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4 Estimating Probabilities of Default Using Different

Statistical Technologies

In this section, we describe the different prediction methods that we employ to estimate P̂ (.),

the three-year probability of default for originated mortgages in the US mortgage dataset. We

subsequently use these estimated default probabilities to understand the impact of different

statistical technologies on mortgage lending.24

First, we implement two Logit models to approximate the “standard” prediction tech-

nology typically used by both researchers and industry practitioners (e.g. Demyanyk and

Van Hemert, 2011; Elul et al., 2010). Second, to provide insights into how more sophisti-

cated prediction technologies will affect outcomes across groups, we estimate a tree-based

model and augment it using a number of techniques commonly employed in machine learn-

ing applications. More specifically, the main machine learning model that we consider is a

Random Forest model (Breiman, 2001); we use cross-validation and calibration to augment

the performance of this model.25

Relative to the simple theoretical analysis considered earlier, we make an important

change. We include the interest rate at loan origination (as SATO) in the set of covariates

used to predict default on the right-hand side. At this point, we essentially treat this variable

(and indeed, other contract characteristics) the same as all of the other right-hand side vari-

ables, and conduct reduced-form estimation assuming there is some noise in initial contract

assignment that generates predictive power over and above observable loan and borrower

characteristics (we confirm there is indeed incremental predictive power conferred by the use

24In our description of the estimation techniques, we maintain the notation in the previous sections,
referring to observable characteristics as x, the loan interest rate as R, and the conditional lifetime probability
of default as P (x,R) = Pr(Default|x,R). In practice, we do not estimate lifetime probabilities of default,
but rather, three-year probabilities of default. We denote these shorter-horizon estimates as p̂(x,R). In the
online appendix, we discuss the assumptions needed to convert estimated p̂(.) into estimates of P̂ (.), which
we need for our equilibrium computations later in the paper.

25We also employ the eXtreme Gradient Boosting (XGBoost) model (Chen and Guestrin, 2016), which
delivers very similar results to the Random Forest. We therefore relegate our description of this model to
the online appendix.
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of these variables, as we describe in the online appendix). That is, we estimate P̂ (x,R).

Later in the paper, we consider the case of endogenously assigned contract characteristics

and embed the estimated P̂ (x,R) functions in a simple NPV model to structurally evaluate

effects on interest rates and acceptance decisions.26

4.1 Logit Models

We begin by estimating two simple implementations of a standard Logit model. These

models find widespread use in default forecasting applications, with a link function such

that:

log

(
g(x)

1− g(x)

)
= x′β. (4)

We estimate two models using this framework, by varying the way in which the covariates in

x enter the model. In the first model, all of the variables in x (listed in Table 2) enter linearly.

Additionally, we include dummies for origination year, documentation type, occupancy type,

product type, investor type, loan purpose, coapplicant status, and a flag for whether the

mortgage is a “jumbo” (meaning the loan amount is too large for Fannie Mae or Freddie

Mac to securitize the loan). In addition, we include the term of the mortgage, and state

fixed effects. We refer to this model simply as “Logit”.

In our second type of Logit model, we allow for a more flexible use of the information in

the covariates in x, in keeping with standard industry practice. In particular, we keep the

same fixed effects as in the first model, but instead of the variables in x entering the model

for the log-odds ratio linearly, we bin them to allow for the possibility that the relationship is

nonlinear. In particular, we assign LTV to bins of 5% width ranging from 20 to 100 percent,

along with an indicator for LTV equal to 80, as this is a frequently chosen value in the data.

For FICO, we use bins of 20 point width from 600 to 850 (the maximum). For FICO values

below 600, we assign all values between 300 (the minimum) and 600 into a single bin, since

26We also describe later how we correct our estimates of the default sensitivity to interest rates. We do so
to bring these reduced form estimates more in line with causal estimates of this sensitivity to facilitate the
evaluation of effects within our structural model.
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Table 2: Variable List

Logit Nonlinear Logit

Applicant Income (linear) Applicant Income (25k bins, from 0-500k)
LTV Ratio (linear) LTV Ratio (5-point bins, from 20 to 100%;

separate dummy for LTV=80%)
FICO (linear) FICO (20-point bins, from 600 to 850;)

separate dummy for FICO<600)
(with dummy variables for missing values)

Common Covariates

Spread at Origination “SATO” (linear)
Origination Amount (linear and log)
Documentation Type (dummies for full/low/no/unknown documentation)
Occupancy Type (dummies for vacation/investment property)
Jumbo Loan (dummy)
Coapplicant Present (dummy)
Loan Purpose (dummies for purchase, refinance, home improvement)
Loan Term (dummies for 10, 15, 20, 30 year terms)
Funding Source (dummies for portfolio, Fannie Mae, Freddie Mac, other)
Mortgage Insurance (dummy)
State (dummies)
Year of Origination (dummies)

Note: Variables used in the models. Data source: HMDA-McDash matched dataset of conventional fixed-rate

mortgages.

there are only few observations with such low credit scores. Finally, we bin income into bins

of US $25,000 width from 0 to US $500,000. We refer to this model with binned covariates

as the “Nonlinear Logit”.

4.2 Tree-Based Models

As an alternative to the traditional models, we use machine learning models to estimate

P̂ (x,R). The term is quite broad, but essentially refers to the use of a range of techniques to

“learn” the function f that can best predict a generic outcome variable y using underlying

attributes x. Within the broad area of machine learning, settings such as ours in which
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the outcome variable is discrete (here, binary, as we are predicting default) are known as

classification problems.

Several features differentiate machine learning approaches from more standard approaches.

For one, the models tend to be nonparametric. Another difference is that these approaches

generally use computationally intensive techniques such as bootstrapping and cross-validation,

which have experienced substantial growth in applied settings as computing power and the

availability of large datasets have both increased.

While many statistical techniques and approaches can be characterized as machine learn-

ing, we focus here on a set of models that have been both successful and popular in prediction

problems, which are based on the use of simple decision trees. In particular, we employ the

Random Forest technique (Breiman, 2001). In essence, the Random Forest is a nonparamet-

ric and nonlinear estimator that flexibly bins the covariates x in a manner that best predicts

the outcome variable of interest. As this technique has been fairly widely used, we provide

only a brief overview of the technique here.27

The Random Forest approach can best be understood in two parts. First, a simple

decision tree is estimated by recursively splitting covariates (taken one at a time) from

a set x to best identify regions of default y. To fix ideas, assume that there is a single

covariate under consideration, namely loan-to-value (LTV). To build a (primitive) tree, we

would begin by searching for the single LTV value which best separates defaulters from

non-defaulters, i.e., maximizes a criterion such as cross-entropy or the Gini coefficient in

the outcome variable between the two resulting bins on either side of the selected value,

thus ensuring default prediction purity of each bin (or “leaf” of the tree). The process then

proceeds recursively within each such selected leaf.

When applied to a broad set of covariates, the process allows for the possibility of bins in

each covariate as in the Nonlinear Logit model described earlier, but rather than the lender

27For a more in-depth discussion of tree-based models applied to a default forecasting problem see, for
example, Khandani et al. (2010).
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pre-specifying the bin-ends, the process is fully data-driven as the algorithm learns the best

function on a training subset of the dataset, for subsequent evaluation on an omitted subset

of out-of-sample test data. An even more important differentiating factor is that the process

can flexibly identify interactions between covariates, i.e., bins that identify regions defined by

multiple variables simultaneously, rather than restricting the covariates to enter additively

into the link function, as is the case in the Nonlinear Logit model.

The simple decision tree model is intuitive, and fits the data extremely well in-sample,

i.e., has low bias in the language of machine learning. However, it is typically quite bad

at predicting out of sample, with extremely high variance on datasets that it has not been

trained on, as a result of overfitting on the training sample.

To address this issue, the second step in the Random Forest model is to implement

(b)ootstrap (ag)gregation or “bagging” techniques. This approach attempts to reduce the

variance of the out-of-sample prediction without introducing additional bias. It does so in

two ways: first, rather than fit a single decision tree, it fits many (500 in our application),

with each tree fitted to a bootstrapped sample (i.e., sampled with replacement) from the

original dataset. Second, at each point at which a new split on a covariate is required, the

covariate in question must be from a randomly selected subset of covariates. The final step

when applying the model is to take the modal prediction across all trees when applied to a

new observation of covariates x.

The two approaches, i.e., bootstrapping the data and randomly selecting a subset of

covariates at each split, effectively decorrelate the predictions of the individual trees, pro-

viding greater independence across predictions. This reduces the variance in the predictions

without much increase in bias.

A final note on cross-validation is in order here. Several (tuning) parameters must be

chosen in the estimation of the Random Forest model. Common parameters of this nature

include, for example, the maximum number of leaves that the model is allowed to have in

total, and the minimum number of data points needed in a leaf in order to proceed with
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another split. In order to ensure the best possible fit, a common approach is to cross-validate

the choice of parameters using K-fold cross-validation. This involves randomly splitting the

training sample into K-folds or sub-samples (in our case, we use K = 3). For each of

the K data folds, we estimate the model using a given set of tuning parameters on the

remaining folds of the data (i.e., the remaining two-thirds of the training data in our setting

with K = 3). We then check the fit of the resulting model on the omitted K-th data fold.

The procedure is then re-done K times, and the performance of the selected set of tuning

parameters is averaged across the folds. The entire validation exercise is then re-done for

each point in a grid of potential tuning parameter values. Finally, the set of parameters that

maximize the out-of-sample fit in the cross-validation exercise are chosen. In our application,

we cross-validate over the minimum number of data points needed to split a leaf, and the

minimum number of data points required on a leaf.

4.2.1 Translating Classifications into Probabilities

An important difference between the Random Forest model and the Logit models is that

the latter naturally produce an estimate of the probability of default given x. In contrast,

the Random Forest model (and indeed, many machine learning models focused on gener-

ating “class labels”) is geared towards providing a binary classification, i.e., given a set of

covariates, the model will output either that the borrower is predicted to default, or to not

default. For many purposes, including credit evaluation, the probability of belonging to a

class (i.e., the default probability) is more useful than the class label alone. In order to use

the predictions of the machine learning model as inputs into a model of lending decisions,

we need to convert predicted class labels into predicted loan default probabilities.

In tree-based models such as the Random Forest model, one way to estimate this proba-

bility is to count the fraction of predicted defaults associated with the leaf into which a new

borrower is classified. This fraction is generally estimated in the training dataset. However,

this estimated probability tends to be very noisy, as leaves are optimized for purity, and
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there are often sparse observations in any given leaf.

A frequently used approach in machine learning is to “calibrate” these noisy estimated

probabilities by fitting a monotonic function to smooth/transform them (see, for example,

Niculescu-Mizil and Caruana, 2005). Common transformations include running a logistic re-

gression on these probabilities to connect them to the known default outcomes in the training

dataset (“sigmoid calibration”), and searching across the space of monotonic functions to

find the best fit function connecting the noisy estimates with the true values (“isotonic re-

gression calibration”).28 In our empirical work, we employ isotonic regression calibration

to translate the predicted classifications into probability estimates. In the online appendix,

we provide more details of this procedure, and discuss how this translation affects the raw

estimates in the Random Forest model.

4.2.2 Estimation

As mentioned earlier, we first estimate our two sets of models on a subset of our full sample,

which we refer to as the training set. We then evaluate the performance of the models on a

test set, which the models have not seen before. In particular, we use 70% of the sample to

estimate and train the models, and 30% to test the models. When we sample, we randomly

select across all loans, such that the training and test sample are chosen independent of

any characteristics, including year of origination. An alternative sampling procedure could

sample within year, but given that a substantial number of loans is originated each year, the

differences between the two procedures should be small.

We also split the training sample into two subcomponents. 70% of the training sample

is a model sample on which we estimate the Logit and Nonlinear Logit models, and train

the Random Forest model. We dub the remaining 30% the calibration sample, and use it to

28In practice, the best results are obtained by estimating the calibration function on a second “calibration
training set” which is separate from the training dataset on which the model is trained. The test dataset is
then the full dataset less the two training datasets. See, for example, Niculescu-Mizil and Caruana (2005).
We use this approach in our empirical application.
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estimate the isotonic regression to construct probabilities from the predicted Random Forest

class labels as described above. This ensures that both the Random Forest and Logit models

have the same amount of data used to estimate default probabilities.29

4.3 Model Performance

We evaluate the performance of the different models on the test set in several ways. We plot

Receiver Operating Characteristic (ROC) curves, which show the variation in the true posi-

tive rate (TPR) and the false positive rate (FPR) as the probability threshold for declaring

an observation to be a default varies (e.g., >50% is customary in Logit). A popular metric

used to summarize the information in the ROC curve is the Area Under the Curve (AUC;

e.g., Bradley, 1997). Models for which AUC is higher are preferred, as these are models for

which the ROC curve is closer to the northwest (higher TPR for any given level of FPR).30

One drawback of the AUC is that it is less informative in datasets which are sparse in

defaulters, since FPRs are naturally low in datasets of this nature (see, for example, Davis

and Goadrich, 2006). We therefore also compute the Precision of each classifier, calculated

as P (y = 1|ŷ = 1), and the Recall , as P (ŷ = 1|y = 1),31 and draw Precision-Recall curves

which plot Precision against Recall for different probability thresholds.

Two additional measures we compute are the Brier Score and the R2. Brier Score is

calculated as the average squared prediction error. Since this measure captures total error

in the model, a smaller number is better, unlike the other metrics. One useful feature of the

29We estimate the Random Forest model using Python’s scikit-learn package, and the Logit models
using Python’s statsmodels package.

30The TPR is the fraction of true defaulters in the test set that are also (correctly) predicted to be
defaulters, and the FPR is the fraction of true non-defaulters in the test set (incorrectly) predicted to be
defaulters. An intuitive explanation of the AUC is that it captures the probability that a randomly picked
defaulter will have been ranked more likely to default by the model than a randomly picked non-defaulter.

31Note that the Recall is equal to the TPR.
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Brier Score is that it can be decomposed into three components:

n−1
∑
n

(P̂ (xi)− yi)2 = n−1

K∑
k=1

nk(ŷk − ȳk)2

︸ ︷︷ ︸
Reliability

−n−1

K∑
k=1

nk(ȳk − ȳ)2

︸ ︷︷ ︸
Resolution

+ ȳ(1− ȳ)︸ ︷︷ ︸
Uncertainty

,

where the predicted values are grouped into K discrete bins, ŷk is the predicted value within

the kth bin, and ȳk is the true mean predicted value within the kth bin. Uncertainty is

an underlying feature of the statistical problem, Reliability is a measure of the model’s

calibration, and Resolution is a measure of the spread of the predictions. A larger resolution

number is better, while a smaller reliability number implies a smaller overall error. It is worth

noting that in our application, the overall uncertainty is 0.00725, and tends to dominate the

overall value of the Brier Score.

Finally, the R2 is a well-known metric, calculated as one minus the sum of squared

residuals under the model, scaled by the sum of squared residuals from using the simple

mean. This gives a simple interpretation as the percentage share of overall variance of the

left-hand-side variable explained by a model.

Figure 3: ROC and Precision-Recall Curves
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Panel A: ROC Panel B: Precision-Recall

Panels A and B of Figure 3 shows the ROC and Precision-Recall curves on the test
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dataset for the three models that we consider. Both figures show that the Random Forest

model performs better than both versions of the Logit model. In Panel A, the TPR appears

to be weakly greater for the Random Forest model than the others for every level of FPR.

In Panel B, the Precision-Recall curves, which are better suited for evaluating models on

the kind of dataset we consider (sparse in defaulters) show stronger gains for the Random

Forest model over the Logit models.

The first, third, fifth, and seventh columns of Table 3 confirm that the metrics are

indeed greater for the Random Forest model than for either Logit model, suggesting that

the machine learning model more efficiently uses the information in the training dataset

in order to generate more accurate predictions out of sample. Indeed, the Random Forest

outperforms the Nonlinear Logit model by 5.4% in terms of average precision, 0.8% in terms

of AUC, and 15.3% in terms of R2. The Brier Score, as discussed, is dominated by the overall

uncertainty of the outcome, 0.00725. Once that is subtracted, the change from Nonlinear

Logit to Random Forest ( -0.000104 to -0.000136) is substantial. When we decompose this

change into reliability and resolution, we find that the gains from switching to Random Forest

in reliability are large, with a 3000% increase, but at the cost of a decrease in resolution,

with a roughly 30% decline.32

In order to verify that these differences are indeed statistically significant, we use boot-

strapping. We hold fixed our estimated models, and randomly resample with replacement

from the original dataset to create 500 bootstrapped sample test datasets. We then re-

estimate the average Precision and AUC scores for all of the models on each bootstrapped

sample. The Random Forest AUC is greater than that of the Nonlinear Logit in 100% of

the bootstrap samples, with an average improvement of 0.7 percent; the corresponding Pre-

cision score increases in 97.6% of the bootstrap samples, with an average improvement of

5.2 percent; the Brier score improves in 100% of the samples, with an average improvement

of 0.4 percent; and the R2 improves in 100% of the samples, with an average improvement

32This result is consistent with Figure A-1 in the online appendix, where we see significantly more spread
in the predictions of the Logit model, but far worse calibration.
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Table 3: Performance of Different Statistical Technologies Predicting Default

ROC AUC Precision Score Brier Score × 100 R2

(1) (2) (3) (4) (5) (6) (7) (8)
Model No Race Race No Race Race No Race Race No Race Race

Logit 0.8522 0.8526 0.0589 0.0592 0.7172 0.7171 0.0245 0.0246
Nonlinear Logit 0.8569 0.8573 0.0598 0.0601 0.7146 0.7145 0.0280 0.0281
Random Forest 0.8634 0.8641 0.0630 0.0641 0.7114 0.7110 0.0323 0.0329

Note: Performance metrics of different models. For ROC AUC, Precision score, and R2, higher numbers

indicate higher predictive accuracy; for Brier score, lower numbers indicate higher accuracy. In odd-numbered

columns, race indicators are not included in the prediction models; in even-numbered columns, they are

included.

of 15 percent.33 Overall, we can conclude with considerable statistical confidence that the

machine learning models significantly improve default prediction performance.

4.3.1 Model Performance With and Without Race

The second, fourth, sixth, and eighth columns of Table 3 show that the inclusion of race has

positive effects on the three models. This suggests that even the more sophisticated machine

learning model benefits from the inclusion of race as an explanatory variable. However,

while all models benefit from the inclusion of race, the improvement is quite small relative

to the increasing improvement in the sophistication of the model. For example, the relative

change in R2 from the simple Logit to the Random Forest model dwarfs the improvement

from adding race as a variable in any of the technologies. The gain from adding race to the

model is larger for the Random Forest model than the Logit models, which is not surprising

given the ability of that model to compute interactions between any included variable and

all of the other variables in the model.

Evaluating changes in the predictive ability of the models as a result of the inclusion of

33The histograms across bootstrapped datasets of the difference in these scores between the Random Forest
and the Nonlinear Logit models are shown in Figure A-6 in the online appendix.
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race is interesting. In keeping with the spirit of the law prohibiting differentiation between

borrowers on the basis of excluded characteristics, assessments of borrower risk should be

colorblind. The fact that race appears to marginally augment their performance suggests

that there is still some sense in which this restriction might be helpful. Importantly, even

though the performance improvement magnitudes are small, this does not mean that the

race indicators do not have significant effects on some groups — for instance, average default

probabilities in the Nonlinear Logit increase from 0.016 to 0.019 for Black borrowers when

race indicators are included, while they decrease for Asian borrowers from 0.006 to 0.004.

To explore this issue further, we employ the three models to predict whether a borrower is

Hispanic or Black using the same set of variables used to predict default. This exercise reveals

striking differences between the models, especially in Panel B of Figure 4. Table 4 confirms

that the Random Forest outperforms the other two models, which have very similar scores,

by 6.9% in terms of average precision, 0.6% in terms of AUC, 2% in terms of Brier score, and

30.7% in terms of R2. Put differently, the machine learning model is better able to ascertain

the racial and ethnic identities of borrowers using observable characteristics. Whether this

ability contributes to triangulation will depend on whether there is considerable variation

in true default propensities across race and ethnic groups that is not non-linearly related to

observable characteristics, as in our simple example (equation (3)). We explore this issue

more comprehensively when we compute estimates of triangulation and flexibility.

Table 4: Performance of Different Statistical Technologies Predicting Race

Model ROC AUC Precision Score Brier Score × 10 R2

Logit 0.7478 0.1948 0.5791 0.0609
Nonlinear Logit 0.7485 0.1974 0.5783 0.0622
Random Forest 0.7527 0.2110 0.5665 0.0813

Note: Performance metrics of different models. For ROC AUC, Precision score, and R2, higher numbers

indicate higher predictive accuracy; for Brier score, lower numbers indicate higher accuracy.

Next, we document how estimated probabilities of default from these models vary across

race-based groups in US mortgage data.
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Figure 4: ROC and Precision-Recall Curves of Predicting Race
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4.4 Differences in Predicted Default Propensities

Having estimated the different models, we can inspect how they differ in their evaluation of

the default risk of borrowers from different race groups.

Figure 5 illustrates the potential impact of new technology on different borrower groups

in our sample. Each panel plots predicted default propensities as a function of borrower

income on the horizontal axis, and FICO score on the vertical axis. The figure shows the

level sets of predicted default probabilities for the Nonlinear Logit model in the top two

panels, and for the Random Forest in the bottom two panels. We hold constant other

borrower characteristics.34 These level sets are overlaid with a heatmap illustrating the

empirical density of income and FICO levels among minority (Black and White Hispanic)

borrowers in the right panels, and White non-Hispanic, Asian, and other borrowers in the left

panels, with darker colors representing more common characteristics among the respective

borrower group.

34Specifically, we vary income and FICO for portfolio loans originated in California in 2011, with a loan
amount of US$ 300,000, LTV 80, and 30 year term, for the purpose of buying a home. The loans are issued
to owner-occupants with full documentation, and securitized through Fannie Mae.
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The figure shows that the level sets of the Random Forest predicted default probabilities

are highly nonlinear and markedly different from those of the Nonlinear Logit. Moreover,

they increase more sharply as we move into the low-income, low-FICO region in the bottom

left corner of each chart. The heatmaps show that these characteristics are also differentially

more common among minority borrowers.

This graphical example is essentially an extension of our theoretical example in Figure 1

to two dimensions. It suggests, for the restricted sample that we consider in these plots,

that new technology has unequal impacts across racial groups. The plot is, however, quite

restricted, as it simply shows the effect of varying income and FICO scores, holding all

other characteristics constant. To assess more rigorously who wins and who loses from the

introduction of new technology, we analyze the change in the entire distribution of predicted

default propensities in our test sample as estimation technology varies.

In Figure 6, we look at the differences between the predicted probabilities of default

(PDs) from the machine learning model and the traditional Logit model. Panel A of the

figure shows the cumulative distribution function (cdf) of the difference in the estimated

default probability (in percentage points) between the Random Forest and Nonlinear Logit.

Borrowers for whom this difference is negative (i.e., to the left of the vertical line) are “win-

ners” from the new technology, in the sense of having a lower estimated default probability,

and those with a positive difference (those to the right of the vertical line) are “losers”. For

each level of difference in the PDs across the two models listed on the x-axis, the y-axis

shows the cumulative share of borrowers at or below that level; each line in the plot shows

this cdf for a different race/ethnic group. Panel B plots the log difference in PDs to highlight

the proportional benefit for each group.35

Both panels show that there is a reduction in default risk under the Random Forest model

for the median borrower (indicated by the dashed horizontal lines) in the population as a

whole. In fact, the plot shows that for all of the groups, the share of borrowers for whom

35For ease of visual representation, we have truncated the x-axes on these plots, as there are a small share
of cases in which the estimated differences in the default probabilities are substantial.
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Figure 5: Example of Predicted Default Probabilities Across Models
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Note: Figure shows level sets of default probabilities (in %) predicted from different statistical models for

different values of borrower income and FICO (holding other characteristics fixed as explained in text).

Nonlinear Logit predictions are shown in top row; Random Forest predictions in bottom row. Underlying

heatmaps show distribution of borrowers within certain race/ethnicity groups: Black and White Hispanic in

left column; White Non-Hispanic and Asian in right column.

the estimated probability of default drops under the new technology is above 50%.

However, the main fact evident from this graph are the important differences between

race groups in the outcomes arising from the new technology. As is evident especially from

Panel B, the winners from the new technology are disproportionately White non-Hispanic

and Asian — the share of the borrowers in these groups that benefit from the new technology
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Figure 6: Comparison of Predicted Default Probabilities Across Models, by Race
Groups
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is roughly 10 percentage points higher than for the Black and White Hispanic populations

(within which there are roughly equal fractions of winners and losers). Furthermore, the

entire distributions of relative PD differences are shifted to the north-west for the White non-

Hispanic and Asian borrowers relative to minority (Black and White Hispanic) borrowers.

This means that there are fewer minority borrowers that see large proportional reductions in

predicted default probabilities when moving to the Random Forest model, and more minority

borrowers that see large proportional increases.

A further important feature evident especially in Panel A is that for these minority

groups, the distribution of predicted default probabilities from the Random Forest model

has larger variance than under the Nonlinear Logit model.36 We return to this finding later.

Figure A-2 in the online appendix shows the same plots replacing the predictions from the

Random Forest model with those from the XGBoost machine learning model. The qualitative

conclusions are robust to the change of machine learning technique: when moving to the

machine learning model from the Nonlinear Logit model, there are more winners among the

White non-Hispanic and Asian borrowers than among the Black and White Hispanic groups.

These figures provide useful insights into the questions that motivate our analysis, and

suggest that the improvements in predictive accuracy engendered by the new prediction

technology are accompanied by an unequal distribution of the winners and losers across race

groups. However, to make further progress, we need to better understand the sources of

these unequal effects in the data.

4.5 Flexibility and Triangulation in the Data

In Section 2, we argued that better statistical technology can generate differential effects

on different groups in the population arising from increased flexibility to learn nonlinear

combinations of characteristics that directly predict default, and/or from an enhanced ability

36The distributions are right-skewed, i.e., the Random Forest model has a tendency to predict far higher
probabilities of default for some of the borrowers in all groups than the Logit model.
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to use these nonlinear combinations to triangulate hidden variables such as race. In this

section, we propose and compute simple empirical measures to gauge the relative importance

of these effects in the data.

This is a non-trivial task because in some cases, flexibility and triangulation are obser-

vationally equivalent. For example, suppose that the true default probability is y = f(x) + ε

for a nonlinear function f(x) of observable characteristics, but that f(x) is in turn perfectly

correlated with group indicators g. Then there is no meaningful distinction between a tech-

nology that flexibly estimates f(x) and one that triangulates g to predict default. Given

this identification problem, we do not pursue a unique decomposition. Instead, we aim to

provide bounds on the importance of flexibility and triangulation.

Consider the performance of the Random Forest and the Nonlinear Logit models reported

in the second and third row of Table 3. If we take the Nonlinear Logit without race as a

baseline scenario, the greatest increase in predictive power relative to this model will clearly

be achieved by simultaneously employing a better technology and adding race, i.e., the

Random Forest with race. For example, for the R2 reported in the final two columns of that

table, this performance improvement is about 17.5% (0.0329−0.0280
0.0280

). Our goal is to decompose

this total improvement into a part explained by the inclusion of race variables, and a part

explained by the inclusion of nonlinear functions of x due to better technology.

As in any partial regression exercise, there are two possible decompositions, which we

report in Table 5. In Panel A, we add race controls first, fixing the Nonlinear Logit as

the statistical technology. The left column reports the percentage of the overall increase in

performance that can be achieved by adding race controls without changing technologies. For

example, around 2% of the total performance improvement of 17.5% (i.e., roughly 35 basis

points) in terms of R2 arise from the inclusion of race dummies as covariates in the Nonlinear

Logit model.37 The right column of Panel A shows the complement of this fraction, which

37One could consider adding race dummies to the Nonlinear Logit in a more flexible manner, for instance
by interacting them with other borrower/loan characteristics. We found that doing so “näıvely” tends to
reduce out-of-sample predictive accuracy, due to overfitting. Using regularization methods such as LASSO
might partly alleviate this problem, but would blur the distinction between the simple traditional technology
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we interpret as the fraction of the total performance improvement attributable to increased

flexibility, conditional on the improvement achieved by simply adding race. For example,

moving from the Nonlinear Logit model with race to the Random Forest model with race

delivers roughly 98% of the 17.5% improvement in R2 (i.e., 17.2%).

In Panel B, we add new technology first, fixing x, without race, as the vector of ex-

planatory variables. The left column shows the fraction of the overall improvement that is

achieved by changing technology (moving from Nonlinear Logit to the Random Forest, with-

out including race as a covariate in either model), while the left column shows its complement

which is attributable to race conditional on having a flexible model (moving from Random

Forest without race to Random Forest with race). A bigger fraction is attributed to race

conditional on new technology than unconditionally in the Logit model, which might not be

surprising, given that additional interactions between race and other observables are being

utilized. This result is consistent with the results in Table 3, and suggests that machine

learning models capitalize on interactive effects between race and other characteristics.

Table 5: Decomposition of Performance Improvement

Race Technology

ROC-AUC 5.88 94.12
Precision 7.90 92.10
Brier 3.25 96.75
R2 2.04 97.96

Technology Race

ROC-AUC 91.16 8.84
Precision 77.21 22.79
Brier 90.63 9.37
R2 87.75 12.25

Panel A: Race Controls First Panel B: New Technology First

These results are informative despite the absence of a unique decomposition. In the

unidentified example where f(x) perfectly correlates with g, the left columns in Panel A

and Panel B would both show 100%, so that it would be impossible to tell whether the

predictive improvements stem from flexibility or triangulation. By contrast, our empirical

estimates consistently imply that flexible technology yields a larger share of the increase in

accuracy than the inclusion of race dummies. This strongly suggests that in case of predicting

mortgage default, triangulation alone is not at the heart of the performance improvements

and machine learning.
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from machine learning. The numbers in the first column of Panel A suggest that knowing race

(which is the best that triangulation without additional flexibility could achieve) would yield

at most 8% of the total performance improvement. Note that Panel B is not as informative

about the relative share of the overall improvement that is attributable to flexibility, since

by switching to the Random Forest model first, the performance improvement could be due

to either flexibility or triangulation. The share of the performance improvement simply

provides an upper bound of what is achieved by having more flexibility in the model. In this

case, the upper bound is large; however, in other applications, it may be tighter and suggest

larger effects of triangulation.

The fact that unequal effects appear mainly driven by flexibility does not make them less

unequal. As discussed earlier, our results potentially hold normative implications, suggesting

that simply prohibiting the use of race in the estimation of default propensity may become

increasingly ineffective as technology improves. While in some measure this is due to the

ability of nonlinear methods to triangulate racial identity, the main effects seem to arise from

the fact that such regulations cannot protect minorities against the additional flexibility

conferred by the new technology.

5 Equilibrium Effects of Statistical Technology

Thus far, our discussion has concentrated on the case in which lenders evaluate default

probabilities based on borrower characteristics x and exogenously specified mortgage contract

terms such as the interest rate. We now turn to thinking about the effects on outcomes of

interest when we embed the lender’s prediction problem in a setting in which mortgage terms

are endogenously determined in competitive equilibrium.
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5.1 A Simple Model of Equilibrium

Consider a lender who has estimated one of the above statistical models to predict default.38

This yields predicted default probabilities P (x,R) as a function of borrower characteristics

x and the mortgage interest rate R.39 Each mortgage lasts one period and ends in either

full repayment of 1 + R per dollar of the loan, or default. In default, the lender recovers

a fraction `(x) of the initial loan amount. The lender’s net cost of capital is ρ > 0. The

per-unit Net Present Value (NPV) of the loan is:

N(x,R) =
1

1 + ρ
[(1− P (x,R)(1 +R) + P (x,R)`(x)]− 1. (5)

We solve for lending rates in competitive equilibrium by calibrating the parameters ρ and `(x)

as detailed below, substituting our empirical estimates of P (x,R) into (5), and solving the

equation N(x,R) = 0 to find interest rates that allow lenders to break even.40,41 Note that

there can be combinations of characteristics x for which no break-even interest rate exists.

Indeed, if P (x,R) is increasing in R, the increased promised repayment as R increases may

be more than offset by increased default risk. Borrowers for whom this is the case are not

accepted for a loan. The online appendix summarizes our computational procedure and gives

a formal derivation of competitive equilibrium.

38An alternative approach is to suppose that lenders estimate a full structural model of borrower char-
acteristics and behavior (e.g., Campbell and Cocco, 2015), and then to map its parameters into predicted
default rates P (x,R). Practitioners usually rely on reduced form models for prediction (see, e.g., Richard
and Roll, 1989; Fabozzi, 2016, for mortgage market applications), which tends to achieve better predictive
outcomes than structural modeling (e.g., Bharath and Shumway, 2008; Campbell et al., 2008). We therefore
posit that lenders take this approach.

39For simplicity, we assume that other contract characteristics such as the loan amount and LTV ratio are
pre-determined and subsume them into the vector x. In reality, these parameters are often dictated, or at
least confined to a narrow range, by local property prices and liquidity constraints faced by the borrower.
In the online appendix, we discuss the extent to which this assumption biases our calculations.

40If multiple interest rates solve this equation, we assume (consistently with the competitive equilibrium
derived in the online appendix) that lenders offer the lowest one in equilibrium.

41The default propensities that we estimate using the different statistical technologies are predictions of
default in the first 36 months of each loan’s life, meaning that all our default data are censored 36 months
after origination for all cohorts. However, equation (5) takes as an input lifetime default rates. We therefore
convert our empirical estimates into estimates of the lifetime default rate based on the Standard Default
Assumptions (SDA) used in the mortgage investor community, as described in the online appendix.
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To calibrate ρ, we assume that each quarter, the average interest rate charged by lenders

is their WACC plus a fixed spread of 30bp.42 We calibrate `(x) by assuming that lenders

can recover 75% of the home value at origination, and also further incur a deadweight cost

of foreclosure equal to 10% of the loan, roughly in line with the loss severities that An and

Cordell (2017) document for Freddie Mac insured loans originated post 2008.43 In unreported

calculations, we explore the robustness of our results to the calibration of ρ and of the two

cost parameters contained in `(x), and find that none of our qualitative conclusions are

sensitive to changes to this calibration.

A clear concern is that our empirical estimates of P̂ (x,R) are not obtained using random

variation in interest rates. Hence, we may over- or understate the interest rate sensitivity of

the NPV if borrowers with high interest rates were adversely or advantageously selected. To

solve this problem, we adopt a two-pronged approach. First, when estimating default prob-

abilities that feed into equilibrium computations, we include only GSE-insured mortgages

(i.e., those securitized through Fannie Mae or Freddie Mac) which are marked as having

been originated with full documentation of borrower income and assets.44 In this segment,

soft information is less likely to be important because lenders focus on whether a borrower

fulfills the underwriting criteria set by the GSEs.

Second, we rely on and extend existing work that estimates the causal effect of interest

rate changes on mortgage default. Specifically, Fuster and Willen (2017) use downward rate

resets of hybrid adjustable-rate mortgages to estimate the sensitivity of default probabilities

to changes in rates. These resets occur three years or more after origination of the mortgages

and are determined by the evolution of benchmark interest rates (such as LIBOR). Using

the same dataset as Fuster and Willen (2017) (i.e., non-agency hybrid ARMs), we estimate

42This corresponds roughly to the average “primary-secondary spread” between mortgage rates and MBS
yields over this period, after subtracting the GSE guarantee fee (e.g., Fuster et al., 2013).

43An and Cordell show an average total loss severity of roughly 0.4-0.45 of the remaining balance at
the time of default, of which about a third are liquidation expenses and carrying costs. We make a small
downward adjustment to these fractions since we need the loss relative to the original balance.

44As mentioned earlier, Keys et al. (2010) argue that there are discontinuities in lender screening at
FICO cutoffs that determine the ease of securitization, but only for low-documentation loans (where soft
information is likely more important), not for full-documentation loans such as the ones we consider.
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a (non-causal) cross-sectional sensitivity of default probabilities to a 50 basis point change

in the interest rate spread at origination (SATO) over the first three years of loan life (i.e.,

before any interest rate resets occur), using the same hazard model used for the Fuster and

Willen (2017) causal estimates. When we compare the resulting non-causal estimate to their

causal estimates, we find that it is roughly 1.7 times as large. The online appendix describes

how we use this factor to adjust our empirical estimates before plugging them into the NPV

calculations. We have reason to believe that this adjustment is quite conservative, since the

non-causal estimate comes from defaults occurring in the first three years — this is more

likely to comprise the segment of interest-rate sensitive borrowers.

In the online appendix, we confirm that the equilibrium sample of GSE, full documen-

tation loans has similar descriptive statistics to the full sample. Moreover, the residual

variation in observed interest rates is indeed lower in the equilibrium sample, consistent

with the idea that soft information is less prominent in this segment.45 We also confirm that

our equilibrium calculations do not place an undue burden of extrapolation on the estimated

predictions, in the sense that we mostly consider combinations of x and R that are commonly

observed in the data.

Restricting the sample to loans for which the GSEs, and not the originating lender, bear

the credit risk may appear at odds with the model we consider, where loans are held in lender

portfolios. However, even a lender that only makes portfolio loans would wish to learn about

default probabilities using as much data as they can acquire, and GSE loans account for

the vast majority of loans in our 2009-2013 sample of conventional loans. Furthermore, the

GSE underwriting criteria and pricing may be such that more loans are originated than in

a purely private market, and this is helpful in the estimation of default probabilities (since

those can only be reliably estimated for loan types actually available in the data).46 A more

45The standard “conditional independence” assumption permits identification in the face of selection. If
lenders do not have access to “soft information” that correlates with default, there is no selection on unob-
servables. The online appendix discusses the relationship between the conditional independence assumption
and equilibrium pricing in greater detail. We also show that conditional independence is sufficient in our
model even if there is selection by borrowers, i.e. when the mortgage is originated only if the borrower is
willing to accept the contract with interest rate R.

46An alternative approach to address issues of potential selection along the extensive margin would be to
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restrictive interpretation of our work could be that we shed light on how such centralized

criteria might change with the introduction of more sophisticated statistical technologies,

and how this development would affect outcomes for different borrower groups.

Since in the data, we cannot observe borrowers not granted mortgages (or at least not

many of their key characteristics), we restrict our counterfactual statements to populations

with distributions of borrower characteristics identical to the one we observe. That is to

say, when reporting population averages, we will implicitly weight borrower characteristics

by the observed density of characteristics in the HMDA-McDash merged dataset. Under the

assumption that borrowers denied a mortgage are high credit risks, we will therefore poten-

tially understate (overstate) the population averages of extensive margin credit expansions

(contractions) when evaluating equilibrium under a counterfactual technology.

5.2 Equilibrium Results

Table 6 summarizes equilibrium lending and pricing decisions. The first two columns show

the average acceptance rate for the Nonlinear Logit (NL) model and the Random Forest (RF)

model. The third and fourth columns show the average spread (SATO) charged to borrowers

conditional on acceptance, and the final two columns show the dispersion of spreads condi-

tional on acceptance. The first five rows of the table show these statistics for each of the

racial groups in the data, and the sixth, averaged across the entire population. The final row

shows the standard deviation of average acceptance rates and spreads across racial groups

(this is the cross-sectional spread of the group means relative to the population mean, where

each group is weighted by its share in the sample).

We find that the proportion of all borrowers in the population that are accepted for a

mortgage increases by about 0.9 percentage points when lenders use Random Forest instead

rely on quasi-exogenous variation in the accept/reject decision, similar in spirit to Kleinberg et al. (2017)’s
use of judge leniency in bail decisions. However, no such quasi-exogenous variation is available to us, partly
because key borrower characteristics such as FICO are not recorded in HMDA for rejected applications.
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of Logit. This increase benefits all racial groups and is particularly pronounced for Black

borrowers. Perhaps intuitively, the superior technology is better at screening, and is therefore

more inclusive on average, and inclusive in a manner that cuts across race groups. Consistent

with this intuition, the cross-group standard deviation of acceptance rates decreases.

The average interest rate spread in the second columns falls slightly (by 2bp) for Asian

borrowers and increases (by 4bp) for Black borrowers. The cross-group standard deviation

of spreads increases by about 50% relative to its baseline value of 2bp under the logit model.

Thus, average pricing effects are unequal across racial groups, consistent with our results on

predicted default probabilities in Section 4. While these effects are quantitatively modest,

they are still not negligible — for instance, a 6 basis point difference in interest rate cumulates

to differential interest payments over 10 years corresponding to about 1% of the original loan

amount.

We see larger effects of the more sophisticated technology on the dispersion of interest

rates in the population overall, as well as within each group (columns 5 and 6). These facts

are reminiscent of our Lemma 1, in which the new technology generates predictions which are

a mean-preserving spread of the older technology. Overall, the dispersion of rates increases

by about 21% (= 0.360−0.298
0.298

)

The cross-group variation in the within-group dispersion of rates is also very different

across the models. The breakdown by racial groups reveals that the increase in dispersion

is much more pronounced for minority borrowers: the standard deviation of interest rates

increases by 5bp and 6bp for Asian and White Non-Hispanic borrowers respectively, but by

8bp and 10bp for Black and White Hispanic borrowers. The proportional increases in within-

group dispersion are also substantially larger for these minority groups. These patterns

suggest that the Random Forest model screens within minority groups more extensively than

the Logit model, leading to changes in intensive margin lending decisions associated with the

new technology. It also suggests an important form of risk confronting White Hispanic and

Black borrowers, namely that their rates are drawn from a distribution with higher variance
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under the new technology. This introduces an additional penalty for risk-averse borrowers.

Table 6: Equilibrium Outcomes

Accept (%) Mean SATO (%) SD SATO (%)

(1) (2) (3) (4) (5) (6)
NL RF NL RF NL RF

Asian 92.4 93.3 -0.108 -0.123 0.274 0.322
White Non-Hispanic 90.3 91.1 -0.083 -0.090 0.296 0.356
White Hispanic 85.6 86.4 -0.031 -0.008 0.333 0.414
Black 77.7 79.3 0.022 0.060 0.365 0.461
Other 88.9 89.5 -0.083 -0.088 0.296 0.360

Population 89.8 90.7 -0.081 -0.086 0.298 0.360

Cross-group SD 2.165 2.098 0.020 0.029

To further explore effects of new technology at the intensive margin, Figure 7 plots the

difference of offered rates in equilibrium under the Random Forest model and those under

the Nonlinear Logit model, for the borrowers accepted for a loan under both technologies.

As before, the plot shows the cumulative distribution function of this difference by race

group. Borrowers for whom this difference is negative benefit (in the sense of having a lower

equilibrium rate) from the introduction of the new machine learning technology, and vice

versa. Once again, the machine learning model appears to generate unequal impacts on

different race groups. A larger fraction of White and especially Asian borrowers appear to

benefit from the introduction of the technology, being offered lower rates under the new

technology, while the reverse is true for the Black and Hispanic borrowers.

To better understand the changes at the extensive margin, Table 7 distinguishes across

three sets of borrowers: “Inclusions” are rejected for credit under the old technology (Non-

linear Logit) in equilibrium but are accepted under the new (Random Forest). “Exclusions”

are accepted under the old technology but rejected under the new technology. The third

category are borrowers who are accepted under both technologies. We study the shares of

these three categories, as well as their interest rates, for the borrower population as a whole

(Panel A) as well as for Asian and White non-Hispanic borrowers (Panel B) and Black and
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Figure 7: Comparison of Equilibrium Interest Rates
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White Hispanic borrowers (Panel C).

The proportions of Inclusions and Exclusions reported in the table reveal that the increase

in average acceptance rates (in Table 6) masks both winners and losers along the extensive

margin. Indeed, 1.8% of the population are losers (who are excluded when moving to the

machine learning model) while 2.6% are winners who newly get included. The first row

of Panel A shows that the Inclusions are high-risk borrowers, who are charged an average

spread that is 96bp larger under Random Forest. These borrowers also have above-average

dispersion of equilibrium rates. The second row shows that Exclusions are also high-risk

borrowers, but less so than winners. The third row shows that the patterns among borrowers

who are always accepted are similar to the population averages.

For the Asian and White non-Hispanic borrowers in Panel B, the shares of Inclusions

and Exclusions as well as the rates look similar to the population overall. In Panel C, we see

that for Black and White Hispanic borrowers, the shares of both Inclusions and Exclusions

are higher, echoing our earlier results on increased dispersion for this group.
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Table 7: Decomposition of Equilibrium Effects

Nonlinear Logit Random Forest
Mean SATO SD SATO Mean SATO SD SATO

A. All Groups
Inclusions (2.61%) 0.96 0.41
Exclusions (1.77%) 0.71 0.39
Always accepted (88.05%) -0.10 0.27 -0.12 0.31

B. White Non-Hispanic and Asian Borrowers
Inclusions (2.52%) 0.95 0.42
Exclusions (1.70%) 0.71 0.39
Always accepted (88.59%) -0.10 0.27 -0.12 0.30

C. Black and White Hispanic Borrowers
Inclusions (3.90%) 1.00 0.38
Exclusions (2.85%) 0.72 0.39
Always accepted (79.89%) -0.04 0.31 -0.03 0.37

Overall, we obtain an interesting picture. As we have seen earlier, the Random Forest

model is a more accurate predictor of defaults. Moreover, it generates higher acceptance

rates on average. However, it penalizes some minority race groups significantly more than

the previous technology, by giving them higher and more dispersed interest rates.

6 Conclusion

In this paper, we find that changes in statistical technology used to identify creditworthiness

can increase disparity in credit market outcomes across different groups of borrowers in the

economy. We present simple theoretical frameworks to provide insights about the underlying

forces driving towards such changes in outcomes, and provide evidence to suggest that this

issue manifests itself in US mortgage data.

The essential insight is that a more sophisticated statistical technology, virtually by def-

inition, generates more disperse predictions as it better fits the predicted outcome variable

(in the case that we consider, this is the probability of mortgage default). It immediately
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follows that such dispersion will generate both “winners” and “losers” relative to their po-

sition in equilibrium under the pre-existing technology. We find that it is mostly Black and

White Hispanic borrowers that relatively lose, in terms of the distribution of predicted de-

fault propensities, and in our counterfactual evaluation, in terms of equilibrium rates, when

moving from a more traditional Logit towards a new machine learning technology to evaluate

default in the specific setting of the US mortgage market.

We outline two possible mechanisms through which such dispersion could come about.

One potential source arises from the increased flexibility of the new technology to capture the

structural relationship between observable characteristics and default outcomes. Another is

that the new technology could more effectively triangulate the (hidden) identity of borrowers,

and through this channel, penalize such borrowers with higher predicted default probabilities

over and above the structural relationship between other observables and default outcomes.

We suggest a simple way to bound the relative importance of these two sources, and in our

empirical analysis find evidence consistent with flexibility being the main source of unequal

effects between groups, with triangulation playing a less important role.

It is of course clear that increases in predictive accuracy can (and in our setting, do) arise

from the improved use of underlying information by new technologies. However, our work

highlights that at least one reason to more carefully study the impact of introducing such

technologies is that the winners and losers from their widespread adoption can be unequally

distributed across societally important categories such as race, income, or gender. Our work

makes a start on studying these impacts in the domain of credit markets, and we believe

there is much more to be done to understand the impacts of the use of these technologies on

the distribution of outcomes in a wide variety of financial and goods markets.
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7 Appendix

7.1 Proof of Lemma 1

We write L2 for the space of random variables z such that E[z2] < ∞. Assume that the

true default probability is P (x) ∈ L2. On L2 we define the inner product < x, y >= E[xy].

Let P̂j denote the projection of P onto a closed subspace Mj ⊂ L2. The space of linear

functions of x, and the space of all functions of x, which we consider in the text, are both

closed subspaces of L2. The projection P̂j minimizes the mean square error E[(P − P̂ )2],

and the projection theorem (e.g., chapter 2 of Brockwell and Davis, 2006) implies that for

any m ∈Mj,

E(m,P − P̂j) = 0

Letting m ≡ 1, we obtain E[P̂j] = E[P ]. Now defining u = P̂2 − P̂1, we immediately get

the required decomposition with E[u] = E[P ] − E[P ] = 0. We still need to show that

Cov(u, P̂1) = 0. We have u = P̂2 − P + P − P̂1. Therefore,

Cov(u, P̂1) = Cov(P̂2 − P, P̂1) + Cov(P − P̂1, P̂1)

The first term is zero by an application of the projection theorem to P̂2, noting that P̂1 ∈
M1 ⊂M2. The second term is zero by a direct application of the projection theorem to P̂1.

7.2 General Characterization of Unequal Effects

We assume here that lenders predict default as a function of a scalar x. We further assume

that the inferior technology M1 is the class of linear functions of x, and that the better

technology M2 is a more general class of nonlinear, but smooth (i.e., continuous and dif-

ferentiable), functions of x. Using a Taylor series representation of the improved estimate

P̂ (x|M2), we can then characterize the impact of new technology on group g in terms of the
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conditional moments x|g:

Lemma 2. Let M1 be the class of linear functions of x, and suppose that borrower

characteristics x ∈ [x, x̄] ⊂ R are one-dimensional. Then the impact of the new statistical

technology on the predicted default rates of borrower group g is:

E[P̂ (x|M2)− P̂ (x|M1)|g] =
∞∑
j=2

1

j!

∂jP̂ (a|M2)

∂xj
E
[
(x− a)j|g

]
−B (6)

where a is the value of the characteristic of a “representative” borrower such that ∂j P̂ (a|M2)
∂xj

=

∂j P̂ (a|M1)
∂xj

, and B = P̂ (a|M1)− P̂ (a|M2) is a constant.

Proof:

The linear prediction can be written as P̂ (x|M1) = α+βx. For the nonlinear technology,

let β = minx∈[x,x̄]
∂P̂ (x|M)

∂x
and β̄ = maxx∈[x,x̄]

∂P̂ (x|M)
∂x

. It is easy to see that β ∈
(
β, β̄

)
: If

β > β̄, for example, then it is possible to obtain an linear prediction that is everywhere

closer to the nonlinear one, and therefore achieves lower mean-square error, by reducing β

by a marginal unit.

By the intermediate value theorem, we can now find a representative borrower type

x = a such that the linear regression coefficient β = ∂P̂ (a|M2)
∂x

. Then, we can write the linear

prediction as a shifted first-order Taylor approximation of the nonlinear prediction around

a:

P̂ (x|M1) = P̂ (a|M2) +
∂P̂ (a|M2)

∂x
(x− a) +B

where B = P̂ (a|M1)− P̂ (a|M2). Now using a Taylor series expansion around a, we have

P̂ (x|M2)− P̂ (x|M1) =
∞∑
j=2

1

j!

∂jP̂ (a|M2)

∂xj
(x− a)j −B (7)

and taking expectations conditional on group g yield the desired result.
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7.3 Example of Triangulation

We prove our claims in the discussion of Figure 2. Suppose that

y = β · x+ γ · g + ε

where x is a one-dimensional characteristic, g ∈ {0, 1} is an indicator for the blue group,

and ε is independent of x and g. Suppose that x|g ∼ N(a, v(g)) and normalize a = 0. Let

v(1) > v(0) and γ > 0. There is no linear correlation between x and g, since

Cov(x, g) = E[x · g] = E[E[x · g|g]]

= E[E[x|g] · g] = 0

Hence the projection of y onto linear functions of x is

P̂lin(x) = αlin + β · x

where the intercept αlin = E[y]. The projection of y onto quadratic functions of x is

P̂quad(x) = αquad + β · x+ γ · (φ · x2),

where

φ =
Cov(x2, g)

V ar(x2)

is the regression coefficient of g onto x2.47 Note that E[x2|g] = v(g) is increasing in g, and

hence Cov(x2, g) > 0. It follows that the fitted value is a convex quadratic function, as

illustrated in the figure.

47This follows, for example, from a standard partial regressions argument: Regressing y on {1, x} gives
residual εy = γ(g − E[g]). Regressing z ≡ x2 on {1, x} gives fitted value ẑ = E[z], because Cov(x, x2) = 0
for a mean-zero normal variable, and residual εz = z − E[z]. By the Frisch-Waugh-Lovell theorem, the
coefficient on x2 in P̂quad(x) is the same as in the regression of εy on εz, namely Cov(γg, x2)/V ar(x2) = γφ.
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Online Appendix to

“Predictably Unequal? The Effect of Machine

Learning on Credit Markets”

A.1 Isotonic Regression and Calibration

As discussed in Section 4.2.1, the direct estimates of probability that come from tree-based
models like the Random Forest model tend to be very noisy. A frequently used approach
in machine learning is to “calibrate” these estimated probabilities by fitting a monotonic
function to smooth/transform them (see, for example, Niculescu-Mizil and Caruana, 2005).
In our empirical work, we employ isotonic regression calibration to translate the predicted
classifications into probability estimates.

Isotonic regression involves searching across the space of monotonic functions to find the
best fit function connecting the noisy estimates with the true values. More concretely, for
an individual i, let yi be the true outcome, and let ŷi be predicted value from the Random
Forest model. Then, the isotonic regression approach is to find ẑ in the space of monotonic
functions to minimize the mean squared error over the calibration data set:

ẑ = arg min
z

∑
i

(yi − z(ŷi))
2. (8)

We estimate this fit over an additional “left-out” dataset, which we call the calibration
dataset. In our results, we calculate predicted probabilities as ẑ(ŷi). We examine the im-
provement from calibration in Figure A-1. This figure bins the predicted values (either ŷi
or ẑ(ŷi)) into 20 equally spaced bins, and takes the average true outcome value for each
predicted bin. If the model is perfectly calibrated, the two values are equal (denoted by
the 45◦ line). We see that for both Logit and Nonlinear Logit, the true values tend to be
below the predicted values, suggesting that for higher predicted values, the Logit models
over-predict default. In contrast, the Random Forest line is above the perfectly-calibrated
line, suggesting that it is underpredicting default. In contrast, the Random Forest - Isotonic
line is almost exactly on the 45◦ line, suggesting near-perfect calibration.
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Figure A-1: Calibration Curve.
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A.2 Comparing Performance With and Without SATO

As discussed in Section 4, we include the interest rate (as SATO) in the set of covariates
used to predict default on the right-hand side. In Table A-1, we compare the predictive
accuracy of the models with and without the interest rate as a contract characteristic, and
see that in most models and cases, adding SATO noticeably improves the accuracy. For
both Logit and Nonlinear Logit, in all statistics the model improves with the addition of
SATO on the leave-out sample, while in the Random Forest model, adding SATO improves
the model performance for all statistics except Precision Score. This implies that there is
additional variation in SATO that predicts default that is not already captured by the other
borrower and loan observables.

A.3 Additional Machine Learning Estimator: XGBoost

As an additional alternative machine learning method, we also estimate a model known as
Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). In essence, the XGBoost
is another nonparametric and nonlinear estimator that uses trees, similar to the Random For-
est method. However, unlike the Random Forest method, which aggregates across randomly
bootstrapped trees, XGBoost improves its training methods by boosting the improvement of
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Table A-1: Performance of Different Statistical Technologies Predicting Default,
with and without SATO

ROC AUC Precision Score Brier Score × 100 R2

(1) (2) (3) (4) (5) (6) (7) (8)
Model SATO No SATO SATO No SATO SATO No SATO SATO No SATO

Logit 0.8522 0.8486 0.0589 0.0578 0.7172 0.7181 0.0245 0.0232
Nonlinear Logit 0.8569 0.8537 0.0598 0.0589 0.7146 0.7149 0.0280 0.0275
Random Forest 0.8634 0.8602 0.0630 0.0639 0.7114 0.7120 0.0323 0.0315

Note: Performance metrics of different models. For ROC AUC, Precision score, and R2, higher numbers

indicate higher predictive accuracy; for Brier score, lower numbers indicate higher accuracy. In odd-numbered

columns, SATO is included as a covariate in the prediction models; in even-numbered columns, it is not

included.

a single tree.

The gradient boosting approach takes a single tree model, similar to those underlying
the Random Forest. However, rather than increase the number of trees, the model iterates
over the tree by constructing new leafs (branching) and removing leafs (pruning) to contin-
uously improve the tree’s predictive power. In particular, the formulation of the problem
allows the tree to focus on improving where the tree can gain the most by strengthening the
“weakness” in the prediction process. Statistically, this method can be viewed as optimizing
two components: the training loss (i.e. the mean squared error of the prediction) and the
complexity of the model (i.e. avoiding overfitting through a penalization function). The
XGboost method allows for a rapid and efficient optimization over these two criteria.1

In Figure A-2, we plot a version of Figure 6, replacing the predictions from the Random
Forest model with those from XGBoost. The qualitative conclusions are the same: moving
to the more complex model, there are more “winners” among the White non-Hispanic and
Asian borrowers than among the Black and White Hispanic groups.

1We implement this method in R using the xgboost library.
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Figure A-2: Comparison of Predicted Default Probabilities — XGBoost vs. Non-
linear Logit
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A.4 Derivation of Competitive Equilibrium

An industry of N ≥ 2 mortgage lenders faces a population of potential borrowers. Each
borrower has a vector x ∈ X of observable characteristics, which lenders observe. As in
the text, we treat the loan characteristics other than the interest rate R as as exogenously
given, and subsume them into the vector x of observables. The next section of this appendix
discusses endogenous contracting terms.

The timing of the game is then as follows: First, each lender offers a schedule of mortgage
rates R(x) to borrowers at date 0, the terms of which can be made contingent on x. We
write R(x) = ∅ if a lender is unwilling to make any offer to x-borrowers. Borrowers then
decide which lender’s offer to accept, if any, based on the selection of offers they receive,
and potentially also based on private information about their own circumstances. Without
explicitly modeling borrowers’ preferences, we define g(x,R) ∈ [0, 1] as the proportion of
x-borrowers who prefer a mortgage at rate R to remaining without a mortgage. We assume
that all borrowers have a preference for lower interest rates. Therefore, g(x,R) is decreasing
in R. When indifferent between several offers, borrowers select a lender randomly to break
ties.

The expected Net Present Value of a mortgage with rate R is N(x,R) as defined in the
text. The probability P (x,R) should be read as the probability of default conditional on the
borrower accepting the mortgage. In a later section of this appendix, we show under what
conditions our empirical estimates of this quantity are valid.

We impose the following regularity condition:

Condition 1 If ∃ R = 0 such that N(x,R) = 0, then N(x,R) is strictly increasing in R in
a neighborhood of its smallest root R0, defined as:

R0 = inf{R|N(x,R) = 0} (9)

Moreover, at any point of discontinuity in R, N(x,R) jumps downwards.

This assumption rules out pathological cases. It is likely to hold under empirically realistic
conditions, for two reasons. First, noting that N(x, 0) < 0, the NPV must cross zero from
below at its smallest root R0, so unless it is tangent (a knife-edge case), it must be strictly
increasing. Second, an upward jump in N(x,R) implies a downward jump in predicted
default rates as the interest rate increases. This can be ruled out in most micro-founded
models of borrower behavior, where default options are more likely to be exercised for high
interest rates, and we consistently find that empirical default probabilities are increasing in
interest rates.

We can fully characterize equilibrium as follows:
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Lemma 2 If N(x,R) < 0 for all R such that g(x,R) > 0, then no x-borrowers obtain a
mortgage with positive probability in equilibrium. Conversely, if N(x,R) ≥ 0 and g(x,R) > 0
for some R, then all x-borrowers are offered credit and the unique accepted equilibrium rate
is R(x) = R0, defined as in Equation (9).

Proof. Consider first the case where N(x,R) < 0 for all R such that g(x,R) > 0.
Suppose that x-borrowers accept a mortgage with positive probability. Then an individual
lender whose offer is accepted with positive probability can profitably deviate by rejecting,
meaning equilibrium cannot be sustained. Thus, x-borrowers do not obtain credit (one
equilibrium strategy which sustains this is for all lenders to offer R = ∅ to x-borrowers).

Suppose next that N(x,R) ≥ 0 and g(x,R) > 0 for some R. If all lenders reject x-
borrowers in equilibrium, then an individual lender can profitably deviate by offering R0 + ε
and capturing the entire market. Thus, x-borrowers must be offered credit in equilibrium,
and will accept only the lowest offer. If the lowest offer is R < R0, then the lender offering it
makes a loss and has a profitable deviation by offering R = ∅. If the lowest offer is R > R0 in
equilibrium, then an individual lender can deviate by offering R0+ε, poach the entire market,
and strictly increase her profits. Hence, the unique equilibrium rate is R0 as required.

A.5 Endogenous Contracting Terms

In our model, lenders’ Net Present Value depends on contracting terms beyond the interest
rate. In particular, equation (5) makes clear that the NPV depends on the loan-to-value
ratio (LTV) at origination. Under different assumptions about recovery rates in default,
NPV could further depend on loan size (L) or other details of the mortgage contracts.

We have so far assumed that all contract characteristics except for the mortgage interest
rate are pre-determined. In this section of the appendix, we discuss whether this assumption
biases our calculation of the proportion of borrowers accepted for credit, and of the average
mortgage rate conditional on acceptance, across the population.

Suppose that lenders offer a menu, which can be characterized as one interest rate R(h, x)
(or possibly rejection) for each possible contract h = {L,LTV}, given observable character-
istics x.

Given a menu R(h, x), let πh(h|x) be the proportion of x-borrowers whose preferred
contract on the menu is h, conditional on accepting any of these offers at all (some borrowers
may choose to remain without a mortgage in equilibrium). Let πx(x) be the population
distribution of x.

In any equilibrium, the proportion of borrowers obtaining a mortgage across the popula-
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tion is

C =

∫ ∫
1{R(h, x) 6= ∅}πh(h|x)πx(x)dhdx

and the average mortgage rate conditional on obtaining credit is

R̄ = C−1

∫ ∫
1{R(h, x) 6= ∅}R(h, x)πh(h|x)πx(x)dhdx

From the population of potential borrowers, we can obtain an estimate π̂x(x) of the distri-
bution of exogenous characteristics x. We also obtain an estimate π̂h(h|x) of the conditional
empirical distribution of contract characteristics given exogenous characteristics. We then
assume that this is an unbiased estimate of the choice function πh(h|x) specified above:

π̂h(h|x) = πh(h|x) + ε

where ε is independent of borrower and contract characteristics. Under this condition, the
average outcomes that we calculate in the paper continue to be an unbiased estimate of the
integrals above, even when contract characteristics are chosen endogenously.

A.6 Computational Prodedure

As discussed in the text, we map our model to the data by specifying the recovery value
`(x) as follows: First, since foreclosure is costly, lenders can recapture γ < 1 of the house
value at default. Second, the expected house value at default is δV , where V is the value at
origination and δ < 1 reflects the fact that default correlates with low house prices. Since
the lender cannot recover more than the promised repayment, the recovery from foreclosure
is min{δγV, (1 + R)L}. Finally, we assume that there is a value-independent deadweight
cost of foreclosure equal to φ per dollar of loan volume. Combining, we therefore define the
recovery value per unit of loan:

`(x) = min{δγV/L, (1 +R)} − φ. (10)

Our calibration sets δγ = 0.75 and φ = 0.1.

To compute equilibrium, for every borrower i, we evaluate N(xi, R) at a grid of 20
values for SATO between -0.4 percent and 1.5 percent, using the predicted default intensities
P (xi, R) from every statistical technology. We then use linear interpolation to solve for the
equilibrium interest rate. If no such solution exists within the grid of interest rates considered,
we conclude that borrower i is rejected.

In our empirical work, we estimate the cumulative probability of default up to a time
period post-loan issuance of 36 months. We denote this estimate as p̂(.). We do so using
both standard as well as machine learning models over our sample period, and do so in order
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to maintain comparability in modeling across cohorts of issued loans, with a view to using
data up until the present.

This generates the need for further modeling, as the appropriate input into the NPV
computations is the lifetime cumulative default probability on the loan. This section of the
appendix discusses how we use the Standard Default Assumption (SDA) curve2 in combina-
tion with our estimated three year cumulative probabilities of default to estimate the lifetime
cumulative probability of default.

Let h(t) represent the default hazard on a loan. The SDA curve has a piecewise linear
hazard rate, which linearly increases to a peak value hmax at t1, stays there until t2, then
decreases linearly to a floor value hmin at t3, staying at that level until the terminal date of
the loan T .

Formally:

h(t) =


hmax
t1
t, 0 ≤ t ≤ t1

hmax, t1 < t ≤ t2

hmax − (t− t2)hmax−hmin
t3−t2 , t2 < t ≤ t3

hmin t3 < t < T

SDA sets t1 = 30, t2 = 60, t3 = 120 months, hmax = 0.6%, hmin = 0.03%.

We assume that the hazard rates of the mortgages in our sample can be expressed as
multiples M of h(t), i.e., as a scaled version of the same basic SDA shape. Using this
assumption, we back outM from our empirically estimated 3-year cumulative default rates P̂ ,
and then the resulting lifetime hazard profile to calculate the cumulative default probability
over the life of the mortgage. In particular, we can map scaled hazard rates to a cumulative
default probability P (t) as:

P (t) = 1− exp [−MH(t)]

where

H(t) =

t∫
0

h(t)dt

The p̂(t̂) that we measure is the cumulative probability of default up to t̂ = 36, i.e. up

2This was originally introduced by the Public Securities Association — see Andrew K. Feigenberg and
Adam S. Lechner, “A New Default Benchmark for Pricing Nonagency Securities,” Salomon Brothers, July
1993.
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to just past the peak of hazard rates. We therefore assume that t̂ ∈ (t1, t2), meaning that:

p̂ = P (t̂) = 1− exp

−M
 t1∫

0

hmax
t1

tdt+

t̂∫
t1

hmaxdt


= 1− exp

[
−M

(
hmax

(
t̂− t1

2

))]

Rearranging, we can therefore express M as:

M = − 1

hmax

log(1− p̂)
t̂− t1

2

.

Having found M , we then find the lifetime cumulative default probability as:

P (T ) = 1− exp[MH(T )]

= 1− exp

[
1

hmax

log(1− p̂)
t̂− t1

2

H(T )

]
≡ PT (P̂ ) (11)

where H(T ) is just a constant determined by T and the SDA:

H(T ) =

t1∫
0

hmax
t1

tdt+

t2∫
t1

hmaxdt+

t3∫
t2

(
hmax − (t− t2)

hmax − hmin
t3 − t2

)
dt+

T∫
t3

hmindt

=
hmin

2
(2T − t2 − t3) +

hmax
2

(t2 + t3 − t1) .

We then simply substitute equation (11) into equation (5) and proceed.

A.7 Identification

Assume that each borrower i has a potential default response yi(R) for every potential
environment R. yi(R) is the structural relationship between the environment R and behavior
– more concretely, we can think of yi(R) as the probability of default, given interest rate R,
in an optimizing model of borrower behavior (for example, Campbell and Cocco, 2015).
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When estimating probabilities of default, a competitive lender facing a new borrower
with characteristics x needs to know the sufficient statistic:

E[yi(R)|xi = x] ≡ p(x,R)

for every R on a grid. When lenders know p(x,R), they can mechanically translate it into
NPV values on the grid using procedures of the sort that we have outlined above, and into
an equilibrium price. This p(x,R) is the structural mapping from x and R to behavior that
must be identified in order for us to make progress on evaluating counterfactuals.

Empirically, we cannot measure p(x,R). We only observe its empirical counterpart:

E[yi(R)|xi = x,Ri = R] ≡ p̃(x,R),

which differs from p(x,R) whenever the assignment of Ri to borrowers is not random, so
that there is information about potential outcomes in the conditioning event Ri = R.3

The standard assumption permitting identification is conditional independence, i.e., given
observable borrower characteristics xi, the treatment (interest rate) Ri is drawn indepen-
dently of potential outcomes yi(R), for all potential R:

Ri ⊥ yi(R)|xi, ∀R

Under this strong assumption, identification follows as:

p(x,R) = E[yi(R)|xi = x]

=
∑
R′

Pr[Ri = R′]E[yi(R)|xi = x,Ri = R′]

=
∑
R′

Pr[Ri = R′]E[yi(R)|xi = x,Ri = R]

= E[yi(R)|xi = x,Ri = R] = p̃(x,R)

In the third line, we use E[yi(R)|xi = x,Ri = R′] = E[yi(R)|xi = x,Ri = R], since
by conditional independence, E[yi(R)|xi = x,Ri = R′] = E[yi(R)|xi = x] = E[yi(R)|xi =
x,Ri = R].

A natural sufficient condition for identification is therefore selection on observables: If
lenders have no information that correlates with determinants of borrower behavior other
than xi, then default predictions are identifiable, even when counterfactual lending and pric-
ing decisions are not observed. In our empirical work, we restrict our analysis to government

3The event Ri = R is a double condition meaning “borrower is accepted, and offered R”, reflecting the
two counterfactuals we do not observe.
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sponsored enterprise (GSE) securitized mortgages, as they are far less likely to suffer from
selection on unobservable borrower characteristics.

A.8 Selection by Borrowers

The discussion of identification in the previous section can be made more general in a world
with borrowers that can accept or reject offers that are made to them. We let ai(R) ∈ {0, 1}
be a dummy for whether borrower i accepts an offer with mortgage rate R. Now the object
of interest for the competitive lender is

E[yi(R)|xi = x, ai(R) = 1] ≡ pa(x,R).

Again, the observable counterpart is

E[yi(R)|xi = x,Ri = R, ai(R) = 1] ≡ p̃a(x,R).

To get identification in this context, we must slightly modify the conditional independence
assumption. Assume that conditional on xi, the treatment Ri is independent of both the
borrower’s default decision yi(R) and her acceptance decision ai(R), for every potential R.
Then identification is achieved because:

pa(x,R) = E[yi(R)|xi = x, ai(R) = 1]

=
∑
R′

Pr[Ri = R′]E[yi(R)|xi = x,Ri = R′, ai(R) = 1]

=
∑
R′

Pr[Ri = R′]E[yi(R)|xi = x,Ri = R, ai(R) = 1]

= E[yi(R)|xi = x,Ri = R] = p̃(x,R)

Again the proof hinges on the third line, which uses conditional independence to argue
that E[yi(R)|xi = x,Ri = R′, ai(R) = 1] = E[yi(R)|xi = x, ai(R) = 1].

A.9 Adjusting Empirical Estimates to Match Causal

Estimates

As we discuss above, if there is no selection on unobservables, this is sufficient for identifi-
cation. We therefore restrict our analysis to the segment of GSE loans, which are less likely
to suffer from selection on unobservables. However, it is still possible that the GSE loans
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in the sample are not completely immune to concerns about selection on unobservables. We
therefore implement an additional adjustment to our estimates to account for this possibility.

Our approach is to use a recently proposed causal estimate of the sensitivity of default
rates to interest rates R due to Fuster and Willen (2017), who use downward rate resets
of hybrid adjustable-rate mortgages to estimate the sensitivity of default probabilities to
changes in rates. Using the same dataset as they do (non-agency hybrid ARMs), we estimate
a (non-causal) cross-sectional sensitivity of 3-year default probabilities to a 50 basis point
change in the interest rate spread at origination (SATO), using the same hazard model as
they use for their causal estimates. When we compare the resulting non-causal estimate
to their causal estimates, we find that it is 1.7 times as large. We therefore adopt the
factor b = 1

1.7
as a measure of bias in our non-causal estimates estimated using GSE loans,

assuming that the bias on 3-year default sensitivities estimated for the FRMs in our sample
is the same as the one estimated using the non-agency hybrid ARMs. We have reason to
believe that this adjustment is quite conservative, since the non-causal estimate comes from
defaults occurring in the first-three years — this is more likely to comprise the segment of
interest-rate sensitive borrowers.

How do we implement the bias adjustment on our estimates? First, as is standard in
the literature, let us consider default intensities as a Cox proportional hazard model, with
hazard rate:

h(t|R) = h0(t) exp(φR)

abstracting from other determinants of default for clarity. Here, h0(t) is the baseline hazard,
and exp(φR) is the dependence of the hazard on the loan interest rate.

We can integrate the hazard function to get the cumulative hazard over the lifetime of
the mortgage:

H(T |R) = H0(T )exp(φR).

The survival function (the cumulative probability of no default) is therefore:

S(R) = e−H(T |R)

= (S0)exp(φR)

where S0 = e−H0(T ), and therefore:

φ =
∂log (−log (S(R))

∂R

The cumulative probability of default is P (R) = 1 − S(R), which is what we input
into our NPV calculations. Now suppose that we have estimates of the lifetime cumulative
probability of default on a grid of interest rates {R(0), ..., R(n)}. Let the predicted probability
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at R(j) be P̂ (j), and

Λ(j) = log
(
−log(1− P̂ (j)) + ε

)
where the small number ε is introduced to ease computation when taking logarithms. Note
that this transformation is invertible with P̂ = 1− e−eε−Λ

.

We know that our estimates imply a sensitivity φ̂ which is biased, i.e., we can assume
that the true sensitivity is bφ̂, where b measures the bias as discussed above.

To adjust our estimates, we transform estimated PDs P̂ (j) into Λ(j). We assume that
the estimates are unbiased for the average interest rate (corresponding to SATO = 0 in our
dataset), with associated grid point j = j?. Then we obtain the bias-adjusted figure

Λ
(j)
adj = b · Λ(j?) + (1− b) · Λ(j)

and finally invert the transformation to get the bias-adjusted PD

P̂
(j)
adj = 1− e−e

ε−Λ
(j)
adj
.

A.10 Descriptive Statistics, Equilibrium Sample

We show descriptive statistics for the equilibrium sample (GSE, full documentation) in Table
A-2. The table simply confirms that the patterns that are evident in the broader set of
summary statistics are also evident for this subsample.

Figure A-3 shows the cumulative distribution functions of the differences between the de-
fault probabilities produced by the different models, restricted to the loans in the equilibrium
sample. It shows that the patterns are very similar to those evident in the full sample.

A.11 Residual Interest Rate Variation

Figure A-4 shows how the estimated probabilities of default from the different models differ
between the full sample and the equilibrium sample. The figure shows that the variance, and
indeed, the right tail, of estimated default probabilities is smaller in the equilibrium sample.
The reduction in the variance of the estimated default probabilities is consistent with less
unobservable information used in the selection and pricing of the loans in the equilibrium
sample.

Table A-3 below shows results from a more direct way to check for the prevalence of
soft information. It shows that the residual variation in interest rate spreads at origination
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Table A-2: Descriptive Statistics, GSE, Full Documentation Originations.

Group FICO Income LoanAmt Rate (%) SATO (%) Default (%)

Mean 765 121 278 4.16 -0.10 0.35
Asian Median 775 105 259 4.25 -0.06 0.00
(N=335,892) SD 39 72 138 0.71 0.45 5.89

Mean 740 92 181 4.36 0.08 1.57
Black Median 748 77 155 4.38 0.08 0.00
(N=114,152) SD 53 60 109 0.71 0.49 12.44

Mean 748 89 192 4.32 0.06 0.83
White Hispanic Median 758 74 166 4.38 0.06 0.00
(N=200,543) SD 47 62 112 0.71 0.48 9.06

Mean 763 109 212 4.24 -0.04 0.56
White Non-Hispanic Median 774 92 186 4.25 -0.02 0.00
(N=3,947,597) SD 42 71 117 0.69 0.43 7.49

Native Am, Alaska, Mean 751 97 210 4.34 0.01 0.97
Hawaii/Pac Isl Median 762 82 185 4.38 0.02 0.00
(N=31,275) SD 47 64 119 0.69 0.46 9.81

Mean 761 118 233 4.31 -0.03 0.69
Unknown Median 773 100 206 4.38 -0.02 0.00
(N=520,459) SD 44 76 128 0.69 0.44 8.29

Note: Income and loan amount are measured in thousands of USD. SATO stands for “spread at origination”

and is defined as the difference between a loan’s interest rate and the average interest rate of loans originated

in the same calendar quarter. Default is defined as being 90 or more days delinquent at some point over the

first three years after origination. Data source: HMDA-McDash matched dataset of fixed-rate mortgages

with full documentation securitized by Fannie Mae or Freddie Mac, originated over 2009-2013.

(SATO), when regressed on the observable variables in our model, is clearly smaller in the
equilibrium sample.

Finally we check if, when computing equilibrium, we are predicting default rates for
combinations of borrower characteristics and interest rates that are scarcely observed in the
data. This would place a great burden of extrapolation on our estimated models, and we
would like to avoid this (although one might argue that a profit-maximizing lender would
also use some extrapolation if the data was sparse). We also therefore compare the residual
SATO to the difference between actual interest rates and model-implied equilibrium rates
for all borrowers in our sample. Figure A-5 shows histograms and kernel density estimates
for the SATO residual and the difference between actual and equilibrium rates.

The figure shows that the counterfactual equilibrium rates that we predict differ from
actual rates, but for the most part, these changes to the predictions lie within the region
covered by residual variation, or the “noise” in observed interest rates. It is true that a
small fraction of our predictions is driven by extrapolation outside the noise in rates that we
observe (the area under the actual rates minus equilibrium rates curve that does not overlap
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Table A-3: Residual Variation in SATO, comparing Full and Equilibrium samples.

sato res sato

Equilibrium Sample 0.292 0.441
Other 0.312 0.438

Note: In the full sample, we regress observed SATO on characteristics (i.e. the RHS variables in the linear

Logit). This table shows the standard deviations of the residual from this regression (left column) and

of the raw SATO series (right column) conditional on loan type. The first row shows standard deviations

among loans that satisfy the restrictions imposed on the equilibrium sample (GSE, full documentation). The

second row shows standard deviations for remaining loans in the full sample. SATO stands for “spread at

origination” and is defined as the difference between a loan’s interest rate and the average interest rate of

loans originated in the same calendar quarter. Data source: HMDA-McDash matched dataset of fixed-rate

mortgages.

measures this fraction), but the patterns in the plot are broadly reassuring about the fairly
limited extent of this extrapolation.4

4Counterfactual differences lying precisely within the range of the residuals, are “supported” by the noise
in the residuals, and counterfactual differences lying outside the range of residuals, are outside the space of
fitted rates, meaning that we may be venturing into ranges of the data that may have been generated by
selection on unobservables. The plot shows that the latter case occurs relatively infrequently.
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Figure A-3: Comparison of Predicted Default Probabilities, Equilibrium Sample
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Figure A-4: Predicted PD, comparing Full and Equilibrium samples.
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Figure A-5: Residual interest rate variation.
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Figure A-6: Bootstrap Estimates of Differences in AUC and Average Precision

−0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012
Random Forest - Nonlinear Logit

0

20

40

60

80

100

120

140

−0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012
Random Forest - Nonlinear Logit

0

20

40

60

80

100

Panel A: Difference in ROC AUC Panel B: Difference in Average Precision

−0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012
(Nonlinear Logit - Random Forest) x 100

0

20

40

60

80

100

120

−0.002 0.000 0.002 0.004 0.006 0.008 0.010 0.012
Random Forest - Nonlinear Logit

0

20

40

60

80

100

120

Panel C: Difference in Brier Score Panel D: Difference in R2

18


	Introduction
	A Simple Theory Framework
	Unequal Effects of Better Technology
	Sources of Unequal Effects
	Discussion

	US Mortgage Data
	Estimating Probabilities of Default Using Different Statistical Technologies
	Logit Models
	Tree-Based Models
	Translating Classifications into Probabilities
	Estimation

	Model Performance
	Model Performance With and Without Race

	Differences in Predicted Default Propensities
	Flexibility and Triangulation in the Data

	Equilibrium Effects of Statistical Technology
	A Simple Model of Equilibrium
	Equilibrium Results

	Conclusion
	Appendix
	Proof of Lemma 1
	General Characterization of Unequal Effects
	Example of Triangulation

	Isotonic Regression and Calibration
	Comparing Performance With and Without SATO
	Additional Machine Learning Estimator: XGBoost
	Derivation of Competitive Equilibrium
	Endogenous Contracting Terms
	Computational Prodedure
	Identification
	Selection by Borrowers
	Adjusting Empirical Estimates to Match Causal Estimates
	Descriptive Statistics, Equilibrium Sample
	Residual Interest Rate Variation

