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Systems are the nothing but the sum of their parts

REDUCTIONISM: DOMINANT APPROACH IN 
SCIENCE



NOT ALWAYS A GOOD APPROACH
By studying the interactions of single individuals can we 
understand the structure of a company?



NOT ALWAYS A GOOD APPROACH
By studying the interactions of single individuals can we 
understand the spreading of infectious diseases?



NOT ALWAYS A GOOD APPROACH
By studying the tweets of single Twitter users can we 
understand the emergence of social protests?



NOT ALWAYS A GOOD APPROACH
By studying the properties of single webpages can we build 
an efficient search engine?



NOT ALWAYS A GOOD APPROACH
By studying the properties of a single molecule of water can 
we understand the transition from ice to liquid water?



MORE IS DIFFERENT!

[...The main fallacy [of] the reductionist hypothesis [is that it] does not by any 
means imply a “constructionist” one: The ability to reduce everything to simple 
fundamental laws does not imply the ability to start from those laws and 
reconstruct the universe. In fact, the more the elementary particle physicists tell 
us about the nature of the fundamental laws, the less relevance they seem to 
have to the very real problems of the rest of science, much less to those of 
society...]   

Anderson, P.W., "More is Different" in Science ,177, 4047. (1972)



COMPLEXITY

Holistic perspective 
• Study systems as a whole 
• Focus shifts on emergent phenomena 



COMPLEX SYSTEMS

Properties: 
• Complex systems are the spontaneous outcome of the interactions among the system 

constitutive units  
• They are self-organizing systems. There is not blueprint, or global supervision 
• Their behavior cannot be described from the properties of each constitutive units



COMPLEX SYSTEMS

Complex DOES NOT mean complicated! 



COMPLEX SYSTEMS REPRESENTATION

Many complex systems can be described as a graph  
• Nodes/vertices describe their constitutive units 
• Links/edges describe the interaction between them

If, after this abstraction the complex features are still present 
• Complex Networks! 



WHY DO WE CARE?
Complex Networks are ubiquitous! 

Biological networks 
• Biochemical networks: molecular-level interactions and mechanisms of control in the cell 
• Example 1) metabolic networks. Nodes are chemicals. Links describe the reactions 
• Example 2) protein-protein interaction networks. Nodes are proteins. Links their interactions

Nature 
Biotechnology 
20, 991 - 997 
(2002)



WHY DO WE CARE?
Biological networks 

• Example 3) gene regulatory networks. Node are genes. A direct link between i and j implies that 
the first gene regulates the expression of the second 

• Example 4) neural networks. Nodes are neurons. Links describe the synapses



WHY DO WE CARE?
Biological networks 

• Ecological networks. Nodes are species. Links their interactions 
• Example 1) Food webs. Nodes are species. Links describe predator-prey interactions 

http://www.uic.edu/classes/bios/bios101/

http://www.uic.edu/classes/bios/bios101/


WHY DO WE CARE?
Networks of information 

• Data items, connected in some way 
• World Wide Web. Nodes webpages. Links, connections between them 
• Citation networks. Nodes papers (patents/legal documents). Links citations between them 



WHY DO WE CARE?
Technological Networks 

• Phone networks 
• Internet 
• Power grids 
• Transportation networks 



WHY DO WE CARE?
Social Networks 

• Interviews and questionnaires 
• Data from archival or third parties records 



WHY DO WE CARE?
Social Networks 

• Co-authorship networks 
• Face-to-face networks 

http://www.sociopatterns.org/

http://www.sociopatterns.org/


NETWORKS REPRESENTATION AND 
THEIR STATISTICAL FEATURES 



NETWORKS AS GRAPHS

Basic Ingredients 
• basic unites: nodes/vertices 
• their interactions: links, edges, connections 

N
E

G(N,E)



NETWORKS AS GRAPHS

Mathematical representation 
• adjacency matrix

Aij =

⇢
1 if there is a connection between i and j

0 otherwise



UNDIRECTED NETWORKS

Symmetrical connections -> symmetrical adjacency matrix

A = AT



DIRECTED NETWORKS

Links (arcs) have direction 

A 6= AT



WEIGHTED NETWORKS

Links are not simply binary

Aij =

⇢
wij if i and j interacted w times

0 otherwise

Typically weights are positive, but it is not necessary 
(signed networks)



BIPARTITE NETWORKS

Two type of vertices

Incidence matrix [m,n]

Bij =

⇢
1 if j belongs to i

0 otherwise



PROJECTIONS OF BIPARTITE NETWORKS
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BASIC MEASURES

Degree 
• number of connections of each node

ki =
P

j Aij

Strength 
• total number of interactions of each node

si =
P

j Aij

Degree in directed networks 
• in-degree 
• out-degree kOUT

i =
P

j Aij

kINi =
P

j A
T
ij



BASIC MEASURES

Degree 
• what is the sum of all the degree?

hki = 1

N

X

i

ki =
2E

N

X

i

ki = 2E



BASIC MEASURES

Path 
• sequence of nodes between i and j

Path length 
• number of hops between i and j



BASIC MEASURES

Geodesic Path 
• the path with the shortest path length



BASIC MEASURES

Local clustering  
• for any i it is the fraction of the neighbours that are connected

ci =
ei

ki(ki�1)
2

ci = 0 ci = 0.5



STATISTICAL DESCRIPTION OF NETWORKS MEASURES

In large systems statistical descriptions are necessary 
• distributions

hxi =
P

x

xP (x)

hxni =
P

x

x

n

P (x)

x ! P (x) ⌘ N
x

N

�

2 =
P

x

(x� µ)2P (x) = hx2i � µ

2 ⌘ hx2i � hxi2



DEGREE DISTRIBUTION IN REAL NETWORKS

Far from normal distributions 
• the average is not a good descriptor of the distribution (absence of a characteristic scale) 
• large variance -> large heterogeneity 
• mathematically described by heavy-tailed (sometimes power-law) distributions



POWER LAWS

Power-laws 
• scale invariance 
• linear in log-log scale 
• divergent moments depending on the exponent

f(x) = ax

�� ! f(cx) = ac

��
x

�� ⇠ x

��

f(x) = ax

�� ! log(f(x)) = log(a)� � log(x)



POWER LAWS



PATH LENGTH DISTRIBUTION IN REAL NETWORKS

Small-world phenomena 
• even for very large graphs the average path length is very very small 
• it scales logarithmically, or even slower, with networks’ size 
• the path length distribution is defined by a characteristic scale

Science, 301, 2003 https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859



CLUSTERING IN REAL NETWORKS

Average local clustering 

Given a value, is it high or low? 
• Null models 
• typically high for social networks, typically low for technological networks  
• still open and debated topic

hCi = 1

N

X

i

Ci



REAL NETWORKS PROPERTIES

Generally speaking 
• heavy-tailed degree distribution 
• small-world phenomena 
• large clustering (depends on the network type)



Albert-Barabasi model (1999) 
• based on preferential attachment (rich get richer), or Matthew effect (1968), Gibrat 

principle (1955), or cumulative advantage (1976) 
• network growth 

NETWORKS MODELS



The model 
• network starts with m0 connected nodes 
• at each time step a new node is added 
• the node connects with m<m0 existing nodes selected proportionally to their degree 

⇧(ki) =
kiP
l kl

NETWORKS MODELS



Albert-Barabasi model (1999) 
• degree distribution

P (k) = 2m2k�3

NETWORKS MODELS



Albert-Barabasi model (1999) 
• clustering

hCi ⇠ (lnN)2

N

NETWORKS MODELS



Albert-Barabasi model (1999) 
• path length

hli = logN

log logN

NETWORKS MODELS



In summary 
• the model creates scale-free networks 
• small-world phenomena 
• vanishing clustering

NETWORKS MODELS
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MODELING AND FORECASTING  
EPIDEMIC EVENTS



DATA

We are in a unique position in history 
•  unprecedented amount of data now available on human activities and interactions 

From the “social atom” to “social molecules” 
• dramatic shift in scale 
• new phenomenology (More is different!) 

Digital revolution 



DATA

PLoS ONE, 8(4), 2013



Mapping language use at worldwide scale

PLoS ONE, 8(4), 2013

PROBING SOCIO-DEMOGRAPHIC TREATS



PROBING COGNITIVE LIMITS
The social brain hypothesis 

•  typical social group size determined by neocortical size 
•  measured in various primates, extrapolated for humans: 100-200 (Dunbar’s number)

PLoS ONE, 6(8), 2011
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www.ebolatracking.org

MAPPING THE GLOBAL DISCUSSION DURING EMERGENCIES

http://www.ebolatracking.org


PROBING HUMAN MOBILITY



Active and passive data collections 
• (Active) participatory platforms 
• (Passive) data harvesting

PROBING HEALTH STATUSES



DATA ARE NOT ENOUGH!

WE NEED MODELS!

Holistic approach necessary --> Complex Systems/Networks

Data Models



CAN WE FORECAST THE SPREADING OF 
INFECTIOUS DISEASES?



GOOD EXAMPLES

Weather Forecasts



WHY ARE WE ABLE TO FORECAST WEATHER?

Global collective effort 

Large computational resources

Huge datasets

Deep knowledge of the Physical processes



FOR EPIDEMICS?

Global collective effort 

Large computational resources

Huge datasets

Deep knowledge of the Physical processes



Within school contact 
patterns

Human interactions are contact networks 

NETWORK THINKING



Mobility and epidemic spreding  

NETWORK THINKING



Black death in1347: a continuous diffusion 
process  
(Murray 1989)

SARS epidemics: a discrete network driven 
process 
(Colizza et al. 2007; Brockmann&Helbing 2013)

NETWORK THINKING



NETWORKS ARE CENTRAL IN THE ANALYSIS 
OF CONTAGION PROCESSES 



DISEASES SPREAD IN MULTI-LAYER 
NETWORKS



WWW.GLEAMVIZ.ORG

http://WWW.GLEAMVIZ.ORG


POPULATION LAYER

Division of the earth in ~800K cells

Voronoi tessellation



MOBILITY LAYER
Long distance: 99% of the world wide air network

Short distance: real data+”gravity law”



EPIDEMIC LAYER

Any general model: according to the disease under study

S I
I

R
β µ

time



DATA STRUCTURE



GLEAM AT WORK



SHORT TERM PREDICTIONS

Quantification of current risks



LONG TERM PREDICTIONS

Crucial for vaccination campaigns 

Characterisation of the unknown parameters 
- Basic reproductive number, R0



LONG TERM PREDICTIONS
R0 estimation

Traditional approach 
Fit the exponential phase

Our approach 
Maximum Likehood on the arrival times

BMC, 7, 45, 2009



LONG TERM PREDICTIONS

BMC, 7, 45, 2009



MODEL’S ACCURACY

BMC, 10, 165, 2012



WHAT ABOUT THE SEASONAL FLU?



PREDICTING THE SEASONAL FLU

Major public health concern 
• two modeling techniques: fits VS generative models



PREDICTING THE SEASONAL FLU
Classic time-series approach 

• The goal is to find a correlation between a surveillance and another (more refined) data 
source such as Twitter or queries on google 

• The parable of Google Flu Trends reveals the issues with this approach



PREDICTING THE SEASONAL FLU

Generative models 
• Simulate the actual infection process 
• They requires a lot of data as “initial conditions” that are typically not available during 

the outbreak



CAN WE MERGE THE TWO?



MODELING THE SEASONAL FLU
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MODELING THE SEASONAL FLU

www.fluoutlook.org

http://www.fluoutlook.org
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