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REDUCTIONISM: DOMINANT APPROACH IN
SCIENCE

Systems are the nothing but the sum of their parts



NOT ALWAYS A GOOD APPROACH

By studying the interactions of single individuals can we
understand the structure of a company?




NOT ALWAYS A GOOD APPROACH

By studying the interactions of single individuals can we
understand the spreading of infectious diseases?



NOT ALWAYS A GOOD APPROACH

By studying the tweets of single Twitter users can we
understand the emergence of social protests?

-------



NOT ALWAYS A GOOD APPROACH

By studying the properties of single webpages can we build
an efficient search engine?




NOT ALWAYS A GOOD APPROACH

By studying the properties of a single molecule of water can
we understand the transition from ice to liquid water?




MORE IS DIFFERENT!

[...The main fallacy [of] the reductionist hypothesis [is that it] does not by any
means imply a “constructionist” one: The ability to reduce everything to simple
fundamental laws does not imply the ability to start from those laws and
reconstruct the universe. In fact, the more the elementary particle physicists fell
us about the nature of the fundamental laws, the less relevance they seem fo
have to the very real problems of the rest of science, much less fo those of

society...]

Anderson, PW., "More is Different” in Science ,177, 4047. (1972)
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COMPLEX SYSTEMS

Properties:

- Complex systems are the spontaneous outcome of the interactions among the system
constitutive units

> They are self-organizing systems. There is not blueprint, or global supervision
> Their behavior cannot be described from the properties of each constitutive units



COMPLEX SYSTEMS

Complex DOES NOT mean complicated!

A &

Lo 'ANL.'D.'N_ -
T




COMPLEX SYSTEMS REPRESENTATION

Many complex systems can be described as a graph

- Nodes/vertices describe their constitutive units
- Links/edges describe the inferaction between them

It, after this abstraction the complex features are still present

- Complex Networks!



WHY DO WE CARE?

Complex Networks are ubiquitous!

Biological networks

- Biochemical networks: molecular-level interactions and mechanisms of control in the cell
- Example 1) metabolic networks. Nodes are chemicals. Links describe the reactions
- Example 2) protein-protein interaction networks. Nodes are proteins. Links their interactions
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WHY DO WE CARE?

Biological networks

- Example 3) gene requlatory networks. Node are genes. A direct link between i and j implies that
the first gene regulates the expression of the second

- Example 4) neural networks. Nodes are neurons. Links describe the synapses




WHY DO WE CARE?

Biological networks

» Ecological networks. Nodes are species. Links their inferactions
- Example 1) Food webs. Nodes are species. Links describe predator-prey inferactions
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hitp://www.uic.edu/classes/bios/bios101/
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WHY DO WE CARE?

Networks of information

> Data items, connected in some way
- World Wide Web. Nodes webpages. Links, connections between them

- itation networks. Nodes papers (patents/legal documents). Links citations between them
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WHY DO WE CARE?

Social Networks

* Interviews and questionnaires
- Data from archival or third parties records




WHY DO WE CARE?

Social Networks

> Co-authorship networks

» Face-to-face networks

http://www.sociopatterns.orq/
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NETWORKS REPRESENTATION AND
THEIR STATISTICAL FEATURES



NETWORKS AS GRAPHS

Basic Ingredients

* basic unites: nodes/vertices N
- their interactions: links, edges, connections F

G(N, E)



NETWORKS AS GRAPHS

Mathematical representation

- adjacency matrix

A | if there is a connection between 1 and ]
1 0  otherwise



UNDIRECTED NETWORKS

Symmetrical connections -> symmetrical adjacency matrix

AR,




DIRECTED NETWORKS

Links (arcs) have direction

A+ AT




WEIGHTED NETWORKS

Links are not simply binary

o if 1 and ] interacted w times
il otherwise

Aij=<

Typically weights are positive, but it is not necessary
(signed networks)



BIPARTITE NETWORKS

Two type of vertices

MK

Incidence matrix [m,n]

e | if J belongs to i

B .
% <\ 0 otherwise




PROJECTIONS OF BIPARTITE NETWORKS




BASIC MEASURES

Degree

- number of connections of each node

ki — Zj Az’j
Degree in directed networks

- in-degree k{ V= Zj A;Z'
@I
- out-degree k; =) Aij

Strength

- total number of interactions of each node
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BASIC MEASURES

Path

- sequence of nodes between i and |

Path length

- number of hops between i and



BASIC MEASURES

Geodesic Path

- the path with the shortest path length




BASIC MEASURES

Local clustering

- for any i it is the fraction of the neighbours that are connected

i =0
Ci TiE e
2




STATISTICAL DESCRIPTION OF NETWORKS MEASURES

In large systems stafistical descriptions are necessary

« distributions
r — P(z) = &z

() = ) p 2P(2)




DEGREE DISTRIBUTION IN REAL NETWORKS

Far from normal distributions

- the average is not a good descriptor of the distribution (absence of a characteristic scale)
- large variance -> large heterogeneity

- mathematically described by heavy-tailed (sometimes power-law) distributions




POWER LAWS

Power-laws

- scale invariance
- linear in log-log scale
- divergent moments depending on the exponent

f(z) = ax N REEEGEN x| ~ 7

f(x) = ax™ = log(f(z)) = log(a) — vlog(x)



POWER LAWS




PATH LENGTH DISTRIBUTION IN REAL NETWORKS

Small-world phenomena

- even for very large graphs the average path length is very very small
- it scales logarithmically, or even slower, with networks’ size

- the path length distribution is defined by a characteristic scale




CLUSTERING IN REAL NETWORKS

Average local clustering

Given a value, is it high or low?

* Null models
- typically high for social networks, typically low for technological networks
- still open and debated topic



REAL NETWORKS PROPERTIES

Generally speaking

- heavy-tailed degree distribution
- small-world phenomena

- large clustering (depends on the network type)



NETWORKS MODELS

Albert-Barabasi model (1999)

- based on preferential attachment (rich get richer), or Matthew effect (1968), Gibrat
principle (1955), or cumulative advantage (1976)

- network growth



NETWORKS MODELS

The model

- network starts with m0 connected nodes
- af each time step a new node is added
- the node connects with m<m0 existing nodes selected proportionally to their degree




NETWORKS MODELS

Albert-Barabasi model (1999)

- degree distribution

Py k"
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NETWORKS MODELS

Albert-Barabasi model (1999)

- path length

SN
~ loglog N

()
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MODELING AND FORECASTING
EPIDEMIC EVENTS



DATA

Digital revolution

We are in a unique position in history

- unprecedented amount of data now available on human activities and interactions

From the “social atom” to “social molecules”

- dramatic shift in scale
- new phenomenology (More is different!)
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PLoS ONE, 8(4), 2013
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PROBING SOCIO-DEMOGRAPHIC TREATS

Mapping language use at worldwide scale

Aniwerpen
‘ »
Gent

. =7 . 2
) <
1 -
LR g Bruxelles =
'VI "‘II 2
* F
\ z .2
G 3 t E
h i S \ > (V]
tl I

PLoS ONE, 8(4), 2013

1% UNIVERSITY

of
¥ GREENWICH




PROBING COGNITIVE LIMITS

The social brain hypothesis

- typical social group size determined by neocortical size
- measured in various primates, extrapolated for humans: 100-200 (Dunbar’s number)
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MAPPING THE GLOBAL DISCUSSION DURING EMERGENCIES

www.ebolatracking.org


http://www.ebolatracking.org

PROBING HUMAN MOBILITY
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PROBING HEALTH STATUSES

Active and passive data collections

- (Active) participatory platforms
* (Passive) data harvesting

~luTracking.net




DATA ARE NOT ENOUGH!
WE NEED MODELS!

e

Holistic approach necessary --> Complex Systems/Networks
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600D EXAMPLES

Weather Forecasts
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WHY ARE WE ABLE TO FORECAST WEATHER?

Global collective effort

Large computational resources

Huge datasets

Deep knowledge of the Physical processes




FOR EPIDEMICS?

Global collective effort

Large computational resources




NETWORK THINKING

Human interactions are contact networks

2nd grove

qth grave

Within school contact
patterns

Thu, 03:00- 09:40
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NETWORK THINKING

Black Death in 1dth Century Europe

June 1350

Dec. 1349 |

June 1348 _/"‘

Epidemic front .
avoluton Dec. 1348

AF
1

Pecmaterrere sl R Rns: o
June 1346 | | Dec. 1347 | “Tunag

South East Asi2

Black death in1347: a continuous diffusion SARS epidemics: a discrete network driven
process process

(Murray 1989) (Colizza et al. 2007; Brockmann&Helbing 2013)
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POPULATION LAYER

Division of the earth in ~800K cells

Voronoi tessellation

e Airport
(transportation hub)

m census cell
1/4°x 1/4° ; Chicago
Des Moines g
geographical
census area
(from
tessellation) St. Louis

Indianapolis
Cincinnati

Louisville

a
»

Nashville
Charlotte

census cell
population
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MOBILITY LAYER

Long distance: 99% of the world wide air network

Short distance: real data+"gravity law”
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EPIDEMIC LAYER

Any general model: according to the disease under study




DATA STRUCTURE

population layer

epidemic layer

susceplible —»

o

' d

latent

Ve ',

. symptomatic
infectious (travel)

. symptomatic
infectious (no travel

2| recovered
' asym ptomatic
infectious

moebility layers

Parameter

E

[

!

B

P

Value
from R
1.9(1.1-2.5]d
3(3-5)d

50%

33%

Description

transmission probakility
average latency period
average infectious period
probability of traveling
for infectious individuals
probahility of being
asymptomatic

relative infectiousness of
asymptomatic infectious
individuals
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SHORT TERM PREDICTIONS

Nea casen s of May 14, 2000
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LONG TERM PREDICTIONS

Crucial for vaccination campaigns

Characterisation of the unknown parameters
- Basic reproductive number, RO




LONG TERM PREDICTIONS

RO estimation Our approach
Maximum Likehood on the arrival times

PSR R
run 7 {IA, tB’tC' tUtE}

P 4 Z P
run 2 {t/\'tB'tC’tU tE}

parameter 2

runn {tA, tu'tc' tUt[}

parameter 1

} ['F LR

i .
AR R NN

e | ikelihood

Traditional approach
Fit the exponential phase

BMC, 7, 45, 2009
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LONG TERM PREDICTIONS

North America
Western Europe
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MODEL'S ACCURACY

4 6 8 10

12 14 16 18 20 22 24 26 28

30 32 34 36 3840 42 44 46 48 50 52 2
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Europe

Iceland

Ireland’

United Kingdom ' —
Belgium’
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urveillance: [0.8 - 1]*peak incidence

1ILlincidence

2 ARl incidence

3 #ILI cases

4 #H1IN1 confirmed cases
5 ILI consultation rate

6 ILI patients per sentinel

1 Peak week Baseline ScenarioRRa=0.6-0.7
== Peak week Baseline Scenario RR a = 0.65
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PREDICTING THE SEASONAL FLU

Major public health concern

- two modeling techniques: fits VS generative models




PREDICTING THE SEASONAL FLU

Classic time-series approach

» The goal is to find a correlation between a surveillance and another (more refined) data
source such as Twitter or queries on google

» The parable of Google Flu Trends reveals the issues with this approach




PREDICTING THE SEASONAL FLU

Generative models

- Simulate the actual infection process

» They requires a lot of data as “initial conditions” that are typically not available during
the outbreak
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MODELING THE SEASONAL FLU

C MECHANISTIC MODELING ) ( MODEL SELECTION ) ( OUTPUT )

Estimated initial
infections in
census areas

simulation modgl forecast
results : selection

GIS —»
Training Predictions
parameter

Tweets with  Twitter user sampling

ILI key population

surveillance
data

6 1

—— baseline confidence interval
best estimate e—e surveillance data

E?:]}r:;tiiﬂslr}glal E . Extracting features of . Parameter space sampling
S geographical locations,
Census areas % |anguages' and key words . Stochastic simulations
- from Twitter data, and ILI
y ‘ trends from surveillance ‘D Model selection and
................................. | e, o

STAGE 1
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MODELING THE SEASONAL FLU

FLUOUTLOOK o B @ ravmintimey G5 MOBS AR

Fluoulook is a webl platform for the exploration of influenza forecasts

Tell e more

EXEMLOKE "URECAS TS
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http://www.fluoutlook.org
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