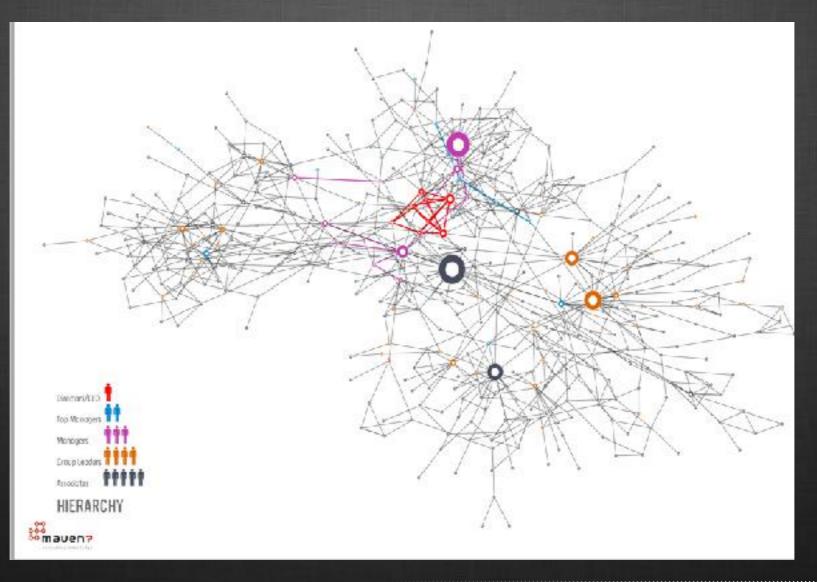
AN INTRODUCTION TO NETWORK SCIENCE

Nicola Perra n.perra@greenwich.ac.uk @net_science

REDUCTIONISM: DOMINANT APPROACH IN SCIENCE

Systems are the nothing but the sum of their parts

By studying the interactions of single individuals can we understand the structure of a company?



By studying the interactions of single individuals can we understand the spreading of infectious diseases?

Feb 18 2009

Chicago New York Los Angeles Houston Toronto Vancouver Caigary Indianapolis

La Gioria

Sao Paulo Mexico City Ro De Janeiro San Juan Bogota

Johannesburg Cairo Cape Town Nairobi London Paris Frankfurt Amsterdan Rome Milan Moscow

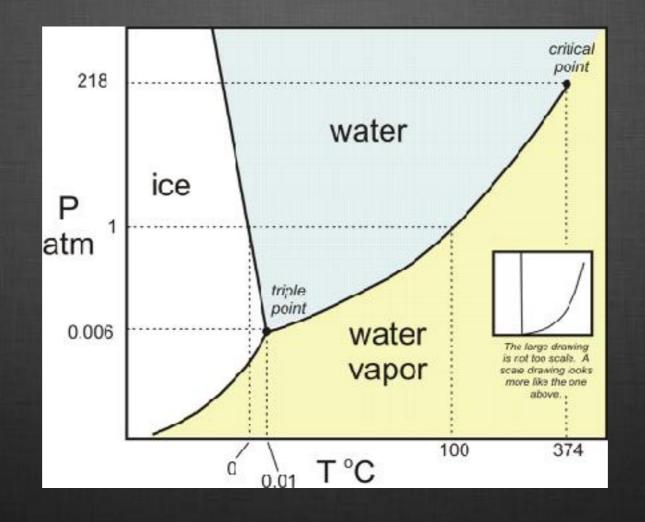
Hong Kong Tokyo Narit Bangkok Singapore Beijing Manila

Sydney Brisbane Aucklaric Perth

By studying the tweets of single Twitter users can we understand the emergence of social protests?

By studying the properties of single webpages can we build an efficient search engine?

By studying the properties of a single molecule of water can we understand the transition from ice to liquid water?



MORE IS DIFFERENT!

[...The main fallacy [of] the reductionist hypothesis [is that it] does not by any means imply a "constructionist" one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe. In fact, the more the elementary particle physicists tell us about the nature of the fundamental laws, the less relevance they seem to have to the very real problems of the rest of science, much less to those of society...]

Anderson, P.W., "More is Different" in Science ,177, 4047. (1972)

COMPLEXITY

Holistic perspective

- Study systems as a whole
- Focus shifts on emergent phenomena

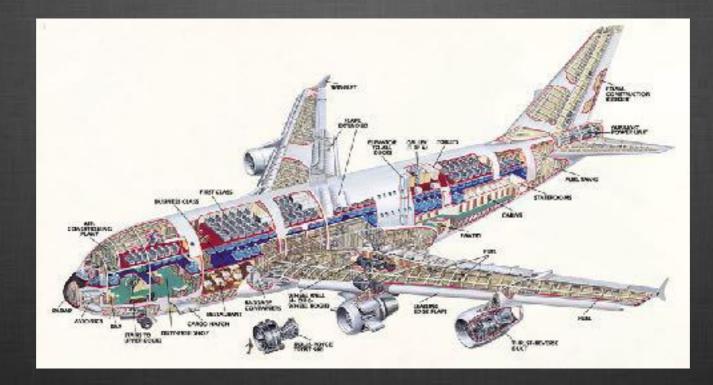
COMPLEX SYSTEMS

Properties:

- Complex systems are the spontaneous outcome of the interactions among the system constitutive units
- They are self-organizing systems. There is not blueprint, or global supervision
- Their behavior cannot be described from the properties of each constitutive units

COMPLEX SYSTEMS

Complex DOES NOT mean complicated!



COMPLEX SYSTEMS REPRESENTATION

Many complex systems can be described as a graph

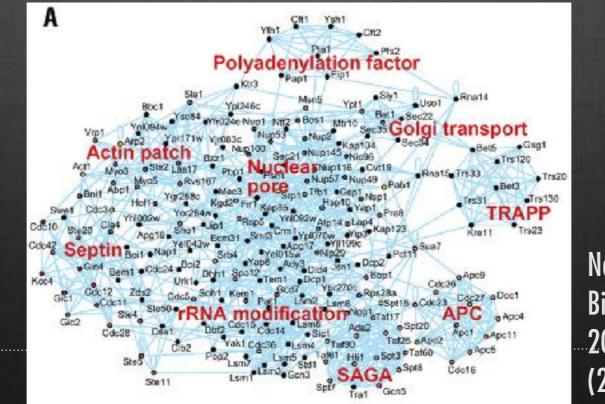
- Nodes/vertices describe their constitutive units
- Links/edges describe the interaction between them

If, after this abstraction the complex features are still present • Complex Networks!

Complex Networks are ubiquitous!

Biological networks

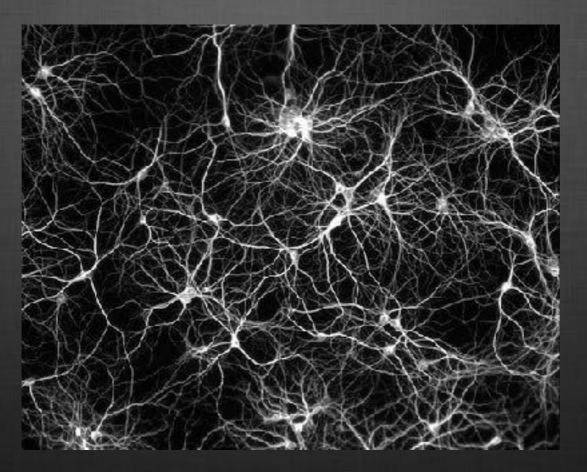
- Biochemical networks: molecular-level interactions and mechanisms of control in the cell
- Example 1) metabolic networks. Nodes are chemicals. Links describe the reactions
- Example 2) protein-protein interaction networks. Nodes are proteins. Links their interactions



Nature Biotechnology 20, 991 - 997 (2002)

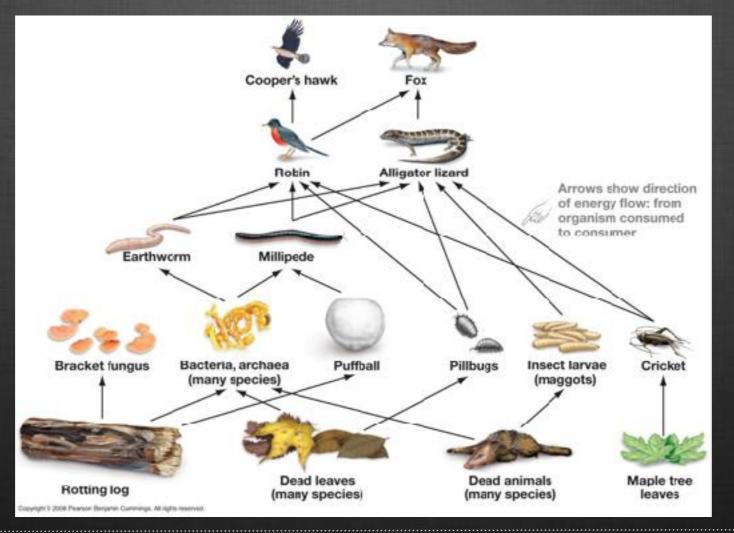
Biological networks

- Example 3) gene regulatory networks. Node are genes. A direct link between i and j implies that the first gene regulates the expression of the second
- Example 4) neural networks. Nodes are neurons. Links describe the synapses



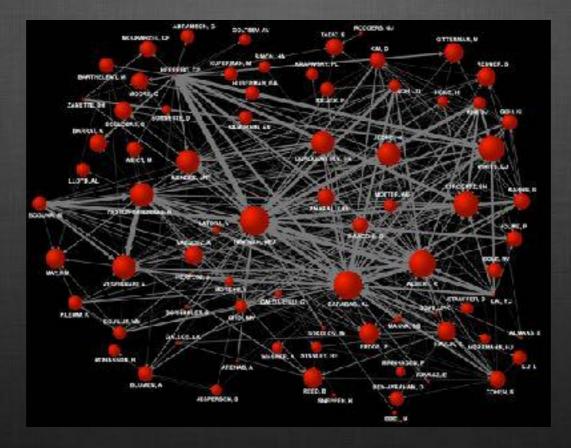
Biological networks

- Ecological networks. Nodes are species. Links their interactions
- Example 1) Food webs. Nodes are species. Links describe predator-prey interactions



Networks of information

- Data items, connected in some way
- World Wide Web. Nodes webpages. Links, connections between them
- Citation networks. Nodes papers (patents/legal documents). Links citations between them



Technological Networks

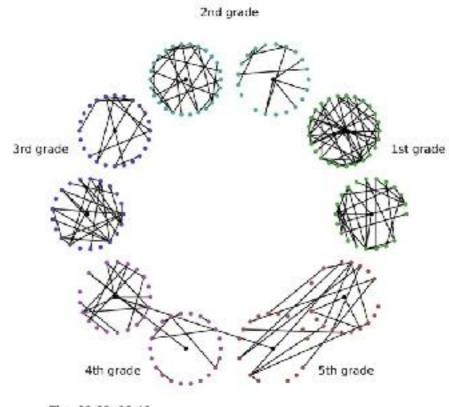
- Phone networks
- Internet
- Power grids
- Transportation networks

Social Networks

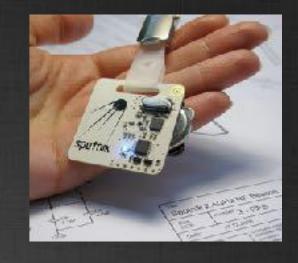
- Interviews and questionnaires
- Data from archival or third parties records

Social Networks

- Co-authorship networks
- Face-to-face networks



Thu, 09:00- 09:40



NETWORKS REPRESENTATION AND THEIR STATISTICAL FEATURES

NETWORKS AS GRAPHS

Basic Ingredients

• basic unites: nodes/vertices

- their interactions: links, edges, connections $\, E \,$

G(N, E)

N

NETWORKS AS GRAPHS

Mathematical representation

• adjacency matrix

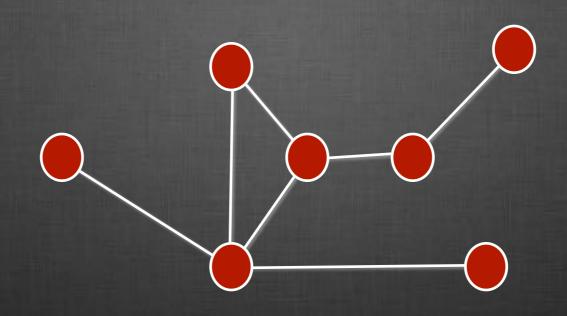
 $A_{ij} = \left\{ \begin{array}{c} 1\\ 0 \end{array} \right]$

if there is a connection between i and j otherwise

UNDIRECTED NETWORKS

Symmetrical connections -> symmetrical adjacency matrix

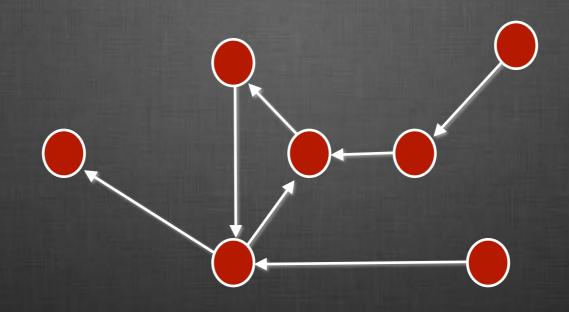
 $A = A^T$



DIRECTED NETWORKS

Links (arcs) have direction

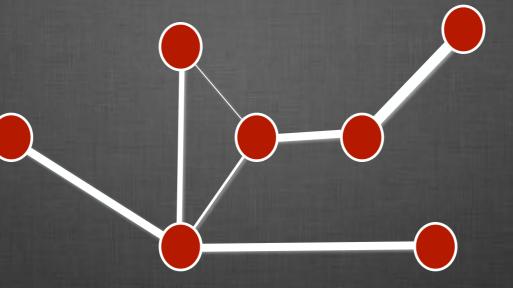
 $A \neq A^T$



WEIGHTED NETWORKS

Links are not simply binary

 $A_{ij} = \begin{cases} w_{ij} & \text{if i and j interacted w times} \\ 0 & \text{otherwise} \end{cases}$



Typically weights are positive, but it is not necessary (signed networks)

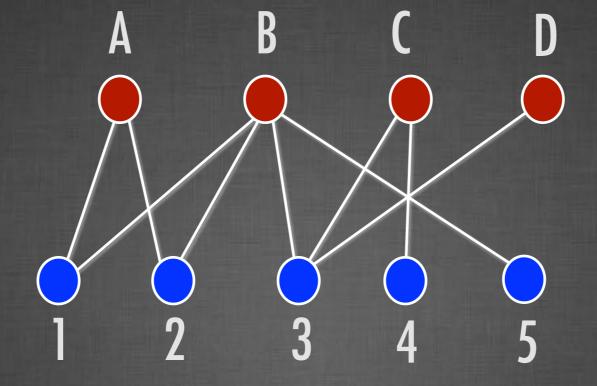
BIPARTITE NETWORKS

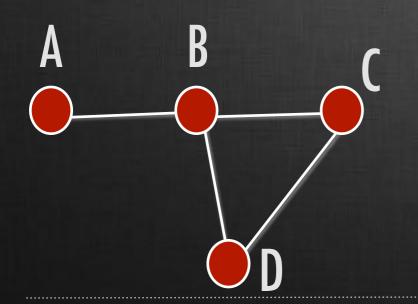
Two type of vertices

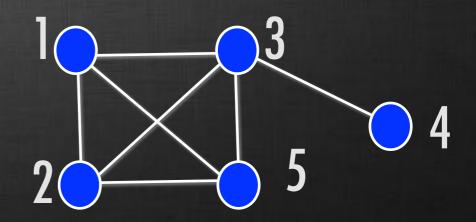
Incidence matrix [m,n]

 $B_{ij} = \begin{cases} 1 & \text{if j belongs to i} \\ 0 & \text{otherwise} \end{cases}$

PROJECTIONS OF BIPARTITE NETWORKS







« »

Degree

• number of connections of each node

$$k_i = \sum_j A_{ij}$$

Degree in directed networks

- in-degree
- out-degree

Strength

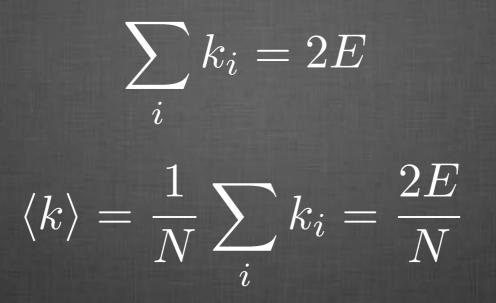
total number of interactions of each node

$$s_i = \sum_j A_{ij}$$

$$k_i^{IN} = \sum_j A_{ij}^T$$
$$k_i^{OUT} = \sum_j A_{ij}$$

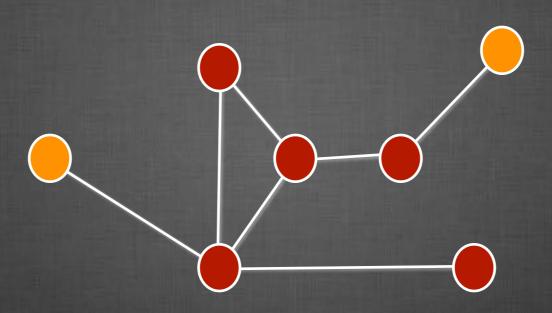
Degree

• what is the sum of all the degree?



Path

• sequence of nodes between i and j

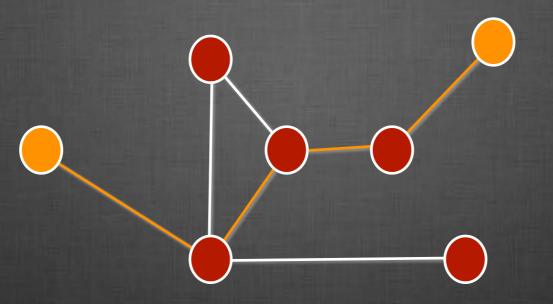


Path length

• number of hops between i and j

Geodesic Path

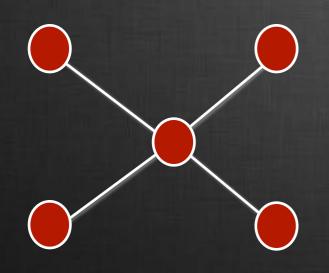
• the path with the shortest path length

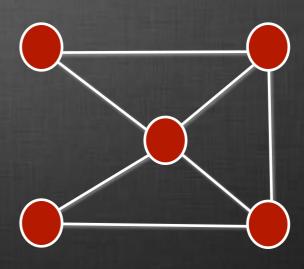


Local clustering

for any i it is the fraction of the neighbours that are connected

$$c_i = \frac{e_i}{\frac{k_i(k_i-1)}{2}}$$





 $c_i = 0.5$

 $c_i = 0$

STATISTICAL DESCRIPTION OF NETWORKS MEASURES

In large systems statistical descriptions are necessary • distributions

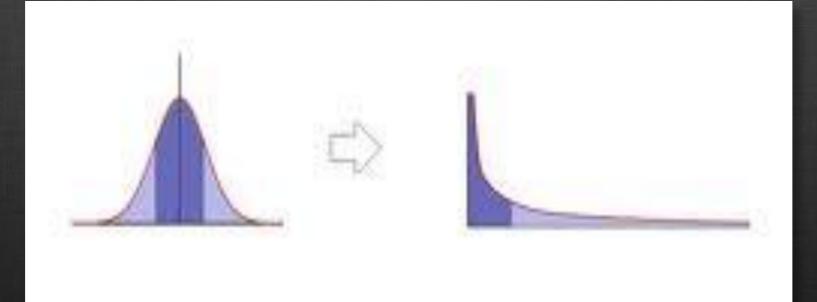
$$x \to P(x) \equiv \frac{N_x}{N}$$
$$\langle x \rangle = \sum_x x P(x)$$
$$\langle x^n \rangle = \sum_x x^n P(x)$$

 $\sigma^2 = \sum_x (x - \mu)^2 P(x) = \langle x^2 \rangle - \mu^2 \equiv \langle x^2 \rangle - \langle x \rangle^2$

DEGREE DISTRIBUTION IN REAL NETWORKS

Far from normal distributions

- the average is not a good descriptor of the distribution (absence of a characteristic scale)
- large variance -> large heterogeneity
- mathematically described by heavy-tailed (sometimes power-law) distributions



POWER LAWS

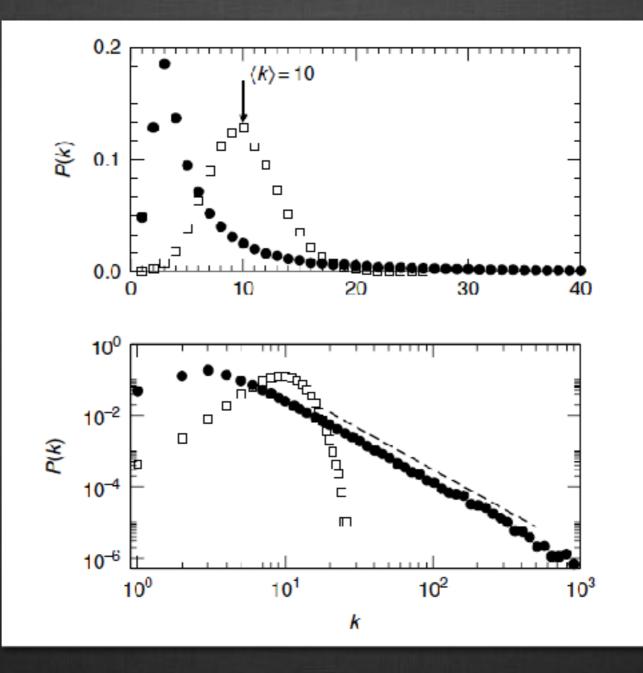
Power-laws

- scale invariance
- linear in log-log scale
- divergent moments depending on the exponent

$$f(x) = ax^{-\gamma} \to f(cx) = ac^{-\gamma}x^{-\gamma} \sim x^{-\gamma}$$

 $f(x) = ax^{-\gamma} \to \log(f(x)) = \log(a) - \gamma \log(x)$

POWER LAWS

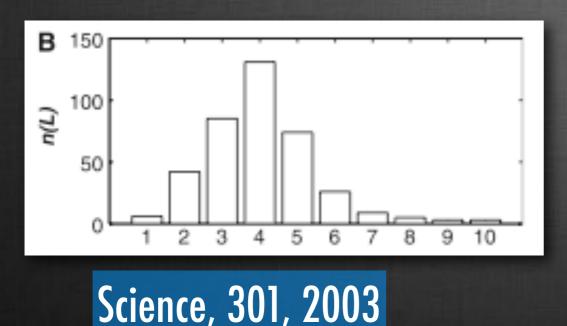


« »

PATH LENGTH DISTRIBUTION IN REAL NETWORKS

Small-world phenomena

- even for very large graphs the average path length is very very small
- it scales logarithmically, or even slower, with networks' size
- the path length distribution is defined by a characteristic scale



Pacebook Jan 2008 Jan 2009 Jan 2010 Jan 2010 Jan 2011 May 2011 May 2011 Hop distance

https://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859

« »

CLUSTERING IN REAL NETWORKS

Average local clustering

$$\langle C \rangle = \frac{1}{N} \sum_{i} C_{i}$$

Given a value, is it high or low?

- Null models
- typically high for social networks, typically low for technological networks
- still open and debated topic

REAL NETWORKS PROPERTIES

Generally speaking

- heavy-tailed degree distribution
- small-world phenomena
- large clustering (depends on the network type)

Albert-Barabasi model (1999)

- based on preferential attachment (rich get richer), or Matthew effect (1968), Gibrat principle (1955), or cumulative advantage (1976)
- network growth

The model

- network starts with m0 connected nodes
- at each time step a new node is added
- the node connects with m<m0 existing nodes selected proportionally to their degree

$$\Pi(k_i) = \frac{k_i}{\sum_l k_l}$$

Albert-Barabasi model (1999)

• degree distribution

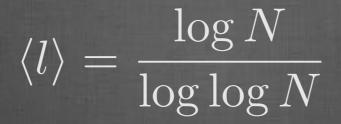
 $P(k) = 2m^2 k^{-3}$

Albert-Barabasi model (1999)

• clustering

 $\langle C \rangle \sim \frac{(\ln N)^2}{N}$

Albert-Barabasi model (1999) • path length



In summary

- the model creates scale-free networks
- small-world phenomena
- vanishing clustering

MODELING AND FORECASTING EPIDEMIC EVENTS

Nicola Perra @net_science

DATA

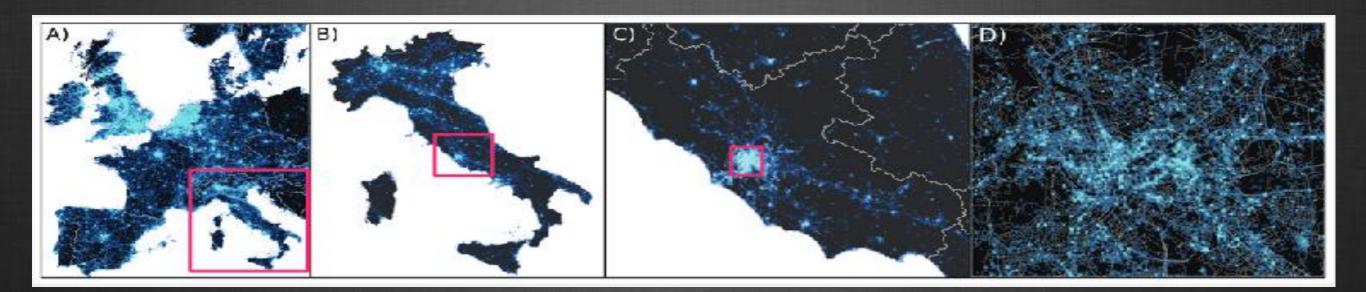
Digital revolution

We are in a unique position in history

• unprecedented amount of data now available on human activities and interactions

From the "social atom" to "social molecules"

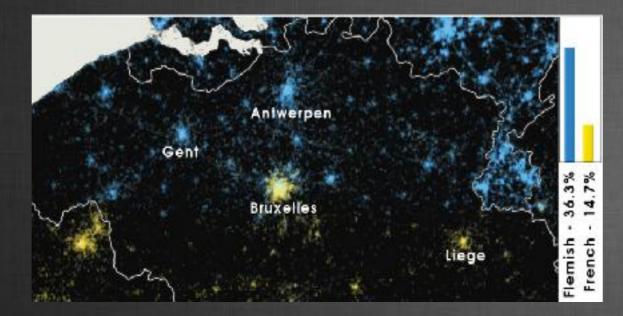
- dramatic shift in scale
- new phenomenology (More is different!)

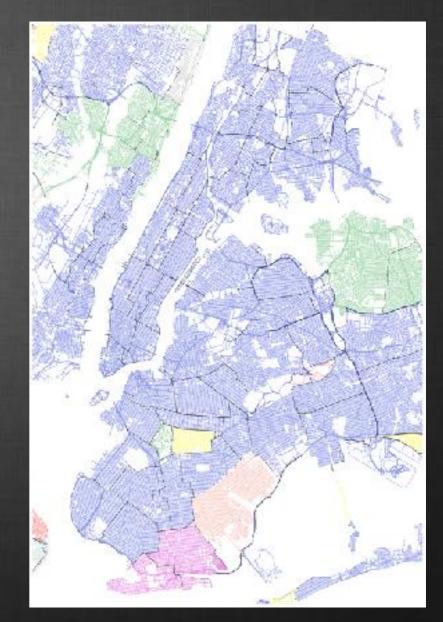


« »

PROBING SOCIO-DEMOGRAPHIC TREATS

Mapping language use at worldwide scale

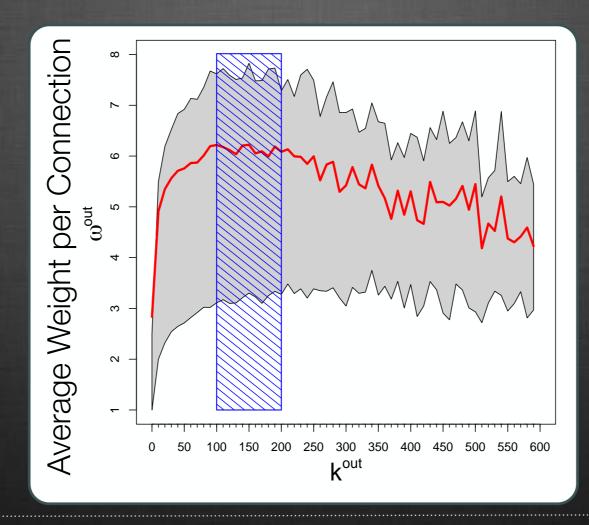




PROBING COGNITIVE LIMITS

The social brain hypothesis

- typical social group size determined by neocortical size
- measured in various primates, extrapolated for humans: 100-200 (Dunbar's number)



PLoS ONE, 6(8), 2011

MAPPING THE GLOBAL DISCUSSION DURING EMERGENCIES

Tarifallaren Steelessenthamir

EBOLATRACKING

DOOLA AMARCKEOD FROM PLACE MERTIONS

M London

Receipt Califranchi Unavitatione Califranchi U

POD-PODY BEDAVION DIv Limite transition share belancement water into causedy http://Loc/09/2010.141

Loscon Hule IRLandor Hull Office Realized Losselve Mixing antiques recealed batelies -Telborach Hull: Hull 101(2020) 114-0000

Lander Hule (Electric), "All Ste Electric M Landon Mining scattpoint rice administration Teleprophysics, it and Sterif Rulevals

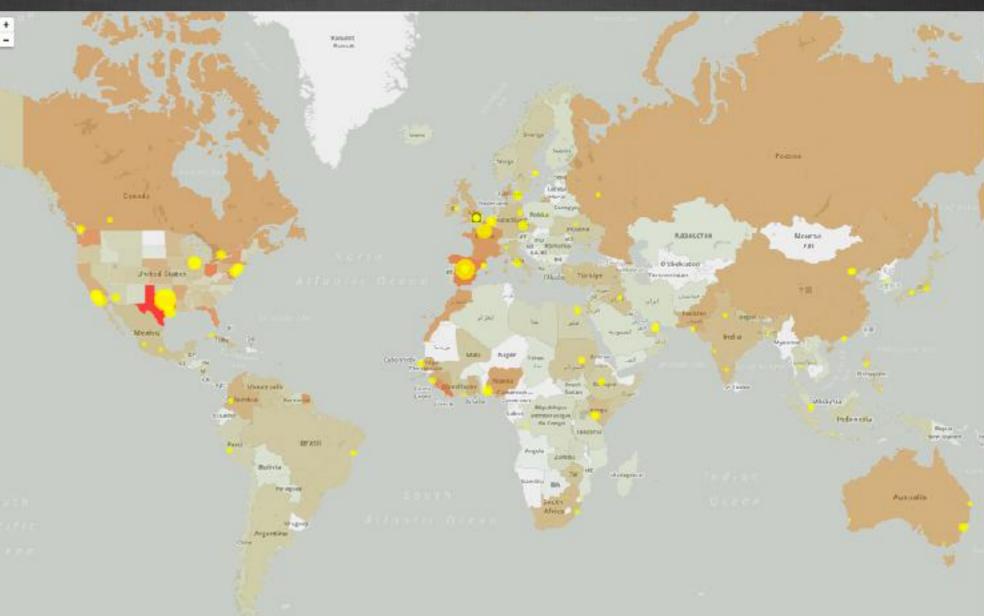
Renyal London Teles (Rushyaconstrees) 4716 Nerva annon has raidoth Di televite fibris Di televit affected Dourries I Kerya, London Herra Hajut, Lehtbydd/Wyk

Britaning Jorden News Britanionnewsch Allen Epidemeiniger Wettinger Bowine Coos Hep-rtunkerschmerkunger Auflicher

Trever Hell & Novillal Street Lawley Unity para large Barls and Mast Anias navog tree it with the With Mast Anias

Ny Tesley Bully directed goodly in Down-to Loncox White solations into semination Neuroscience-Durits

The Sur III Trafford and the surger of the particular data and a surger of the particular surger of the particular surger of the surger of the



www.ebolatracking.org

K

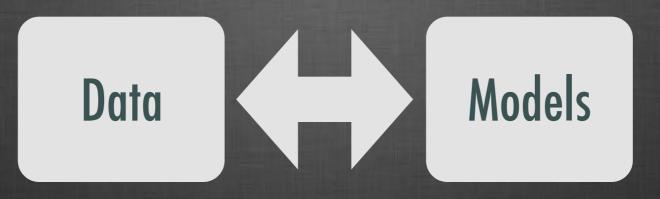
PROBING HUMAN MOBILITY

PROBING HEALTH STATUSES

Active and passive data collections

- (Active) participatory platforms
- (Passive) data harvesting

DATA ARE NOT ENOUGH! WE NEED MODELS!

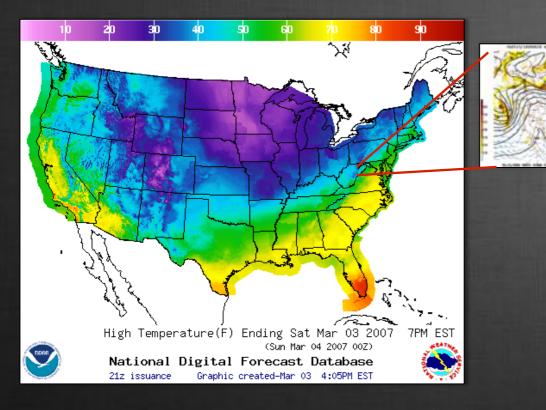


Holistic approach necessary --> Complex Systems/Networks

CAN WE FORECAST THE SPREADING OF INFECTIOUS DISEASES?

GOOD EXAMPLES

Weather Forecasts



WHY ARE WE ABLE TO FORECAST WEATHER?

Global collective effort

Large computational resources

Huge datasets

Deep knowledge of the Physical processes

FOR EPIDEMICS?

Global collective effort

Large computational resources

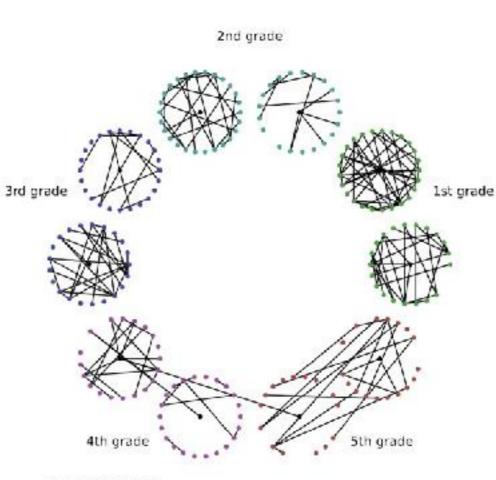
luge datasets

Deep knowledge of the Physical processes

NETWORK THINKING

Human interactions are contact networks

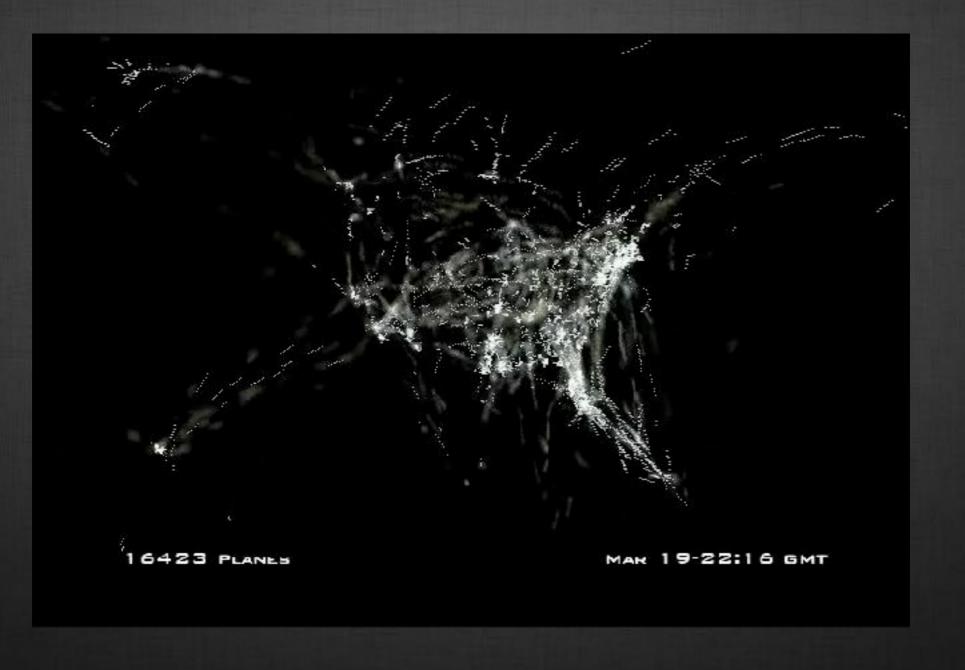
Within school contact patterns



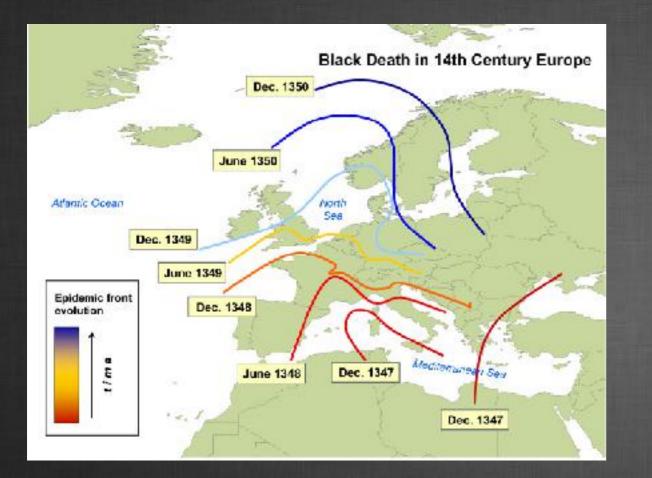
Thu, 09:00- 09:40

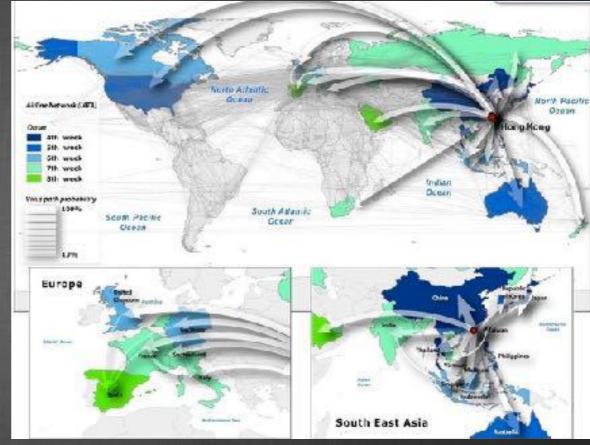
NETWORK THINKING

Mobility and epidemic spreding



NETWORK THINKING





Black death in1347: a continuous diffusion process

(Murray 1989)

SARS epidemics: a discrete network driven process

(Colizza et al. 2007; Brockmann&Helbing 2013)

NETWORKS ARE CENTRAL IN THE ANALYSIS OF CONTAGION PROCESSES

DISEASES SPREAD IN MULTI-LAYER NETWORKS

GLEAM

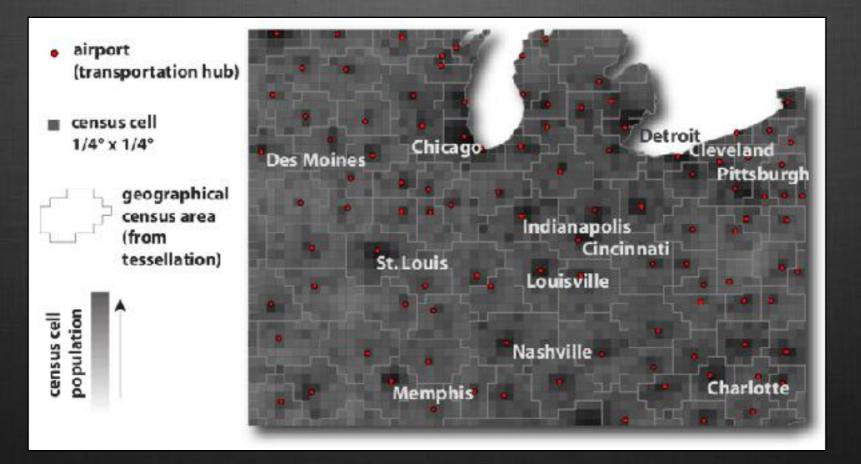
GLOBAL EPIDEMIC AND MOBILITY MODEL

« »

POPULATION LAYER

Division of the earth in ~800K cells

Voronoi tessellation



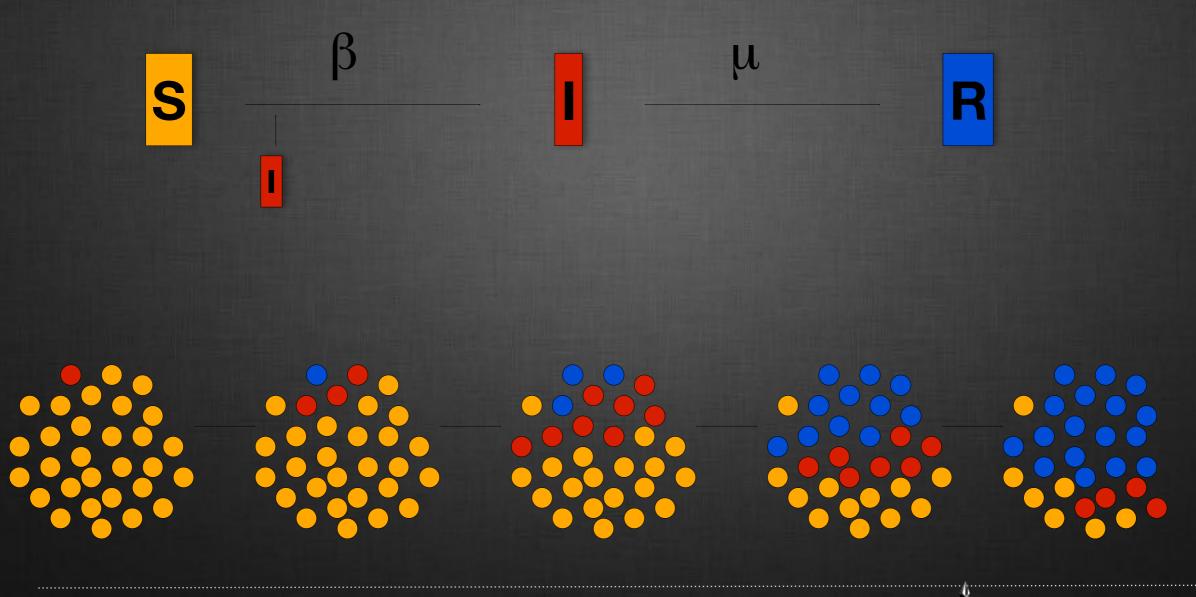
MOBILITY LAYER

Long distance: 99% of the world wide air network

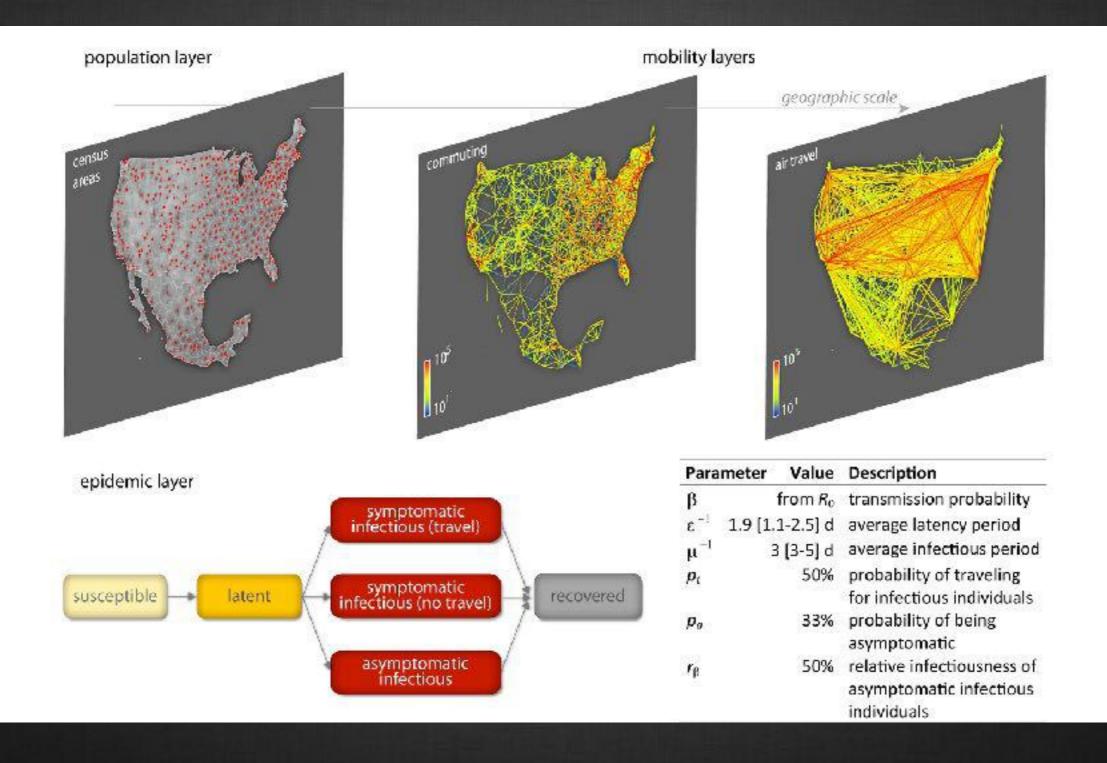
Short distance: real data+"gravity law"

EPIDEMIC LAYER

Any general model: according to the disease under study

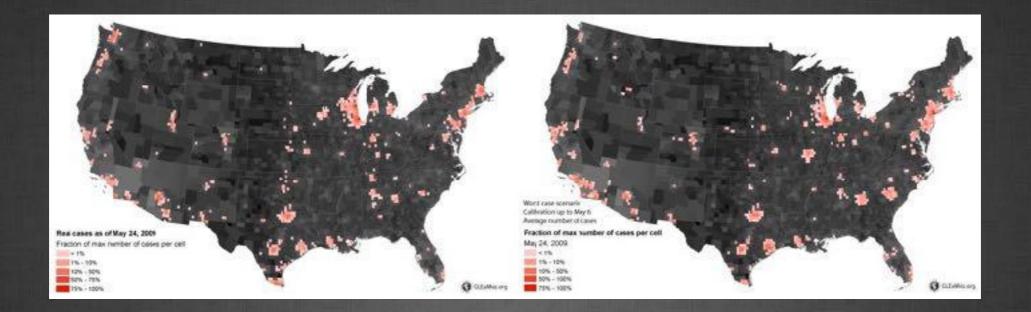


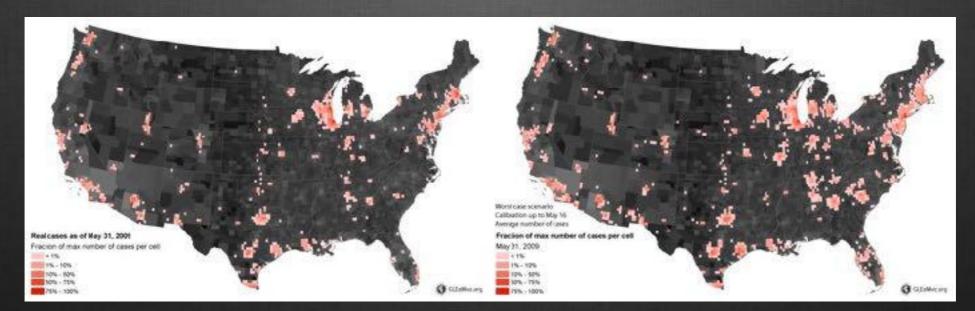
DATA STRUCTURE



GLEAM AT WORK

SHORT TERM PREDICTIONS





Quantification of current risks

</ >

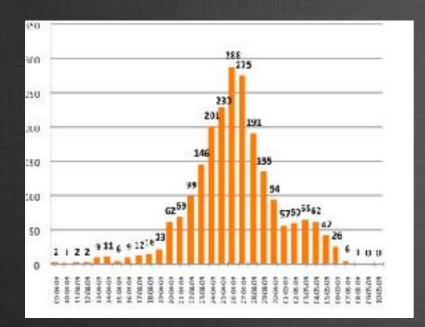
LONG TERM PREDICTIONS

Crucial for vaccination campaigns

Characterisation of the unknown parameters - Basic reproductive number, RO

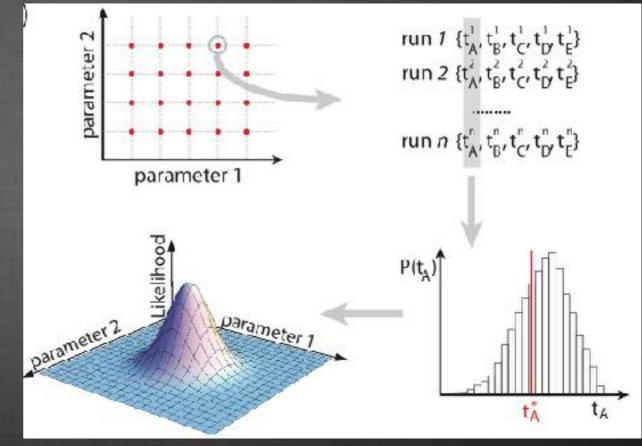
LONG TERM PREDICTIONS

RO estimation



Traditional approach Fit the exponential phase

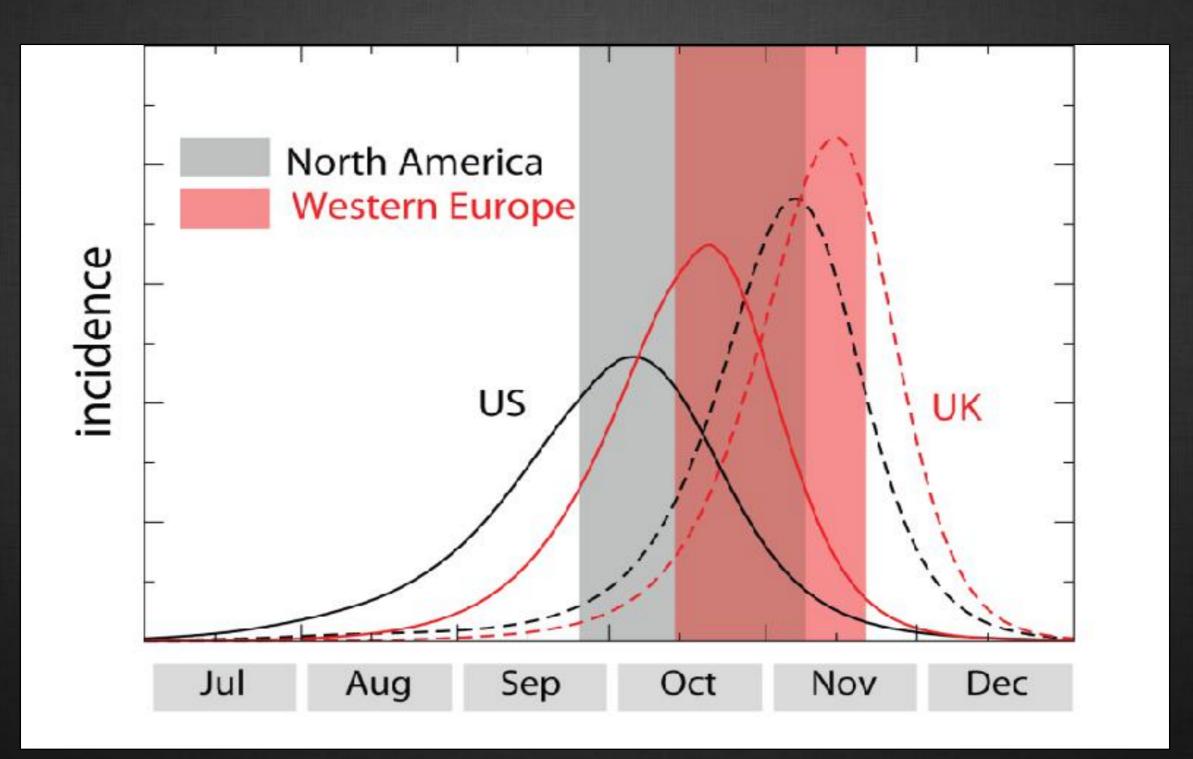
Our approach Maximum Likehood on the arrival times



BMC, 7, 45, 2009

 $\rangle\rangle$

LONG TERM PREDICTIONS

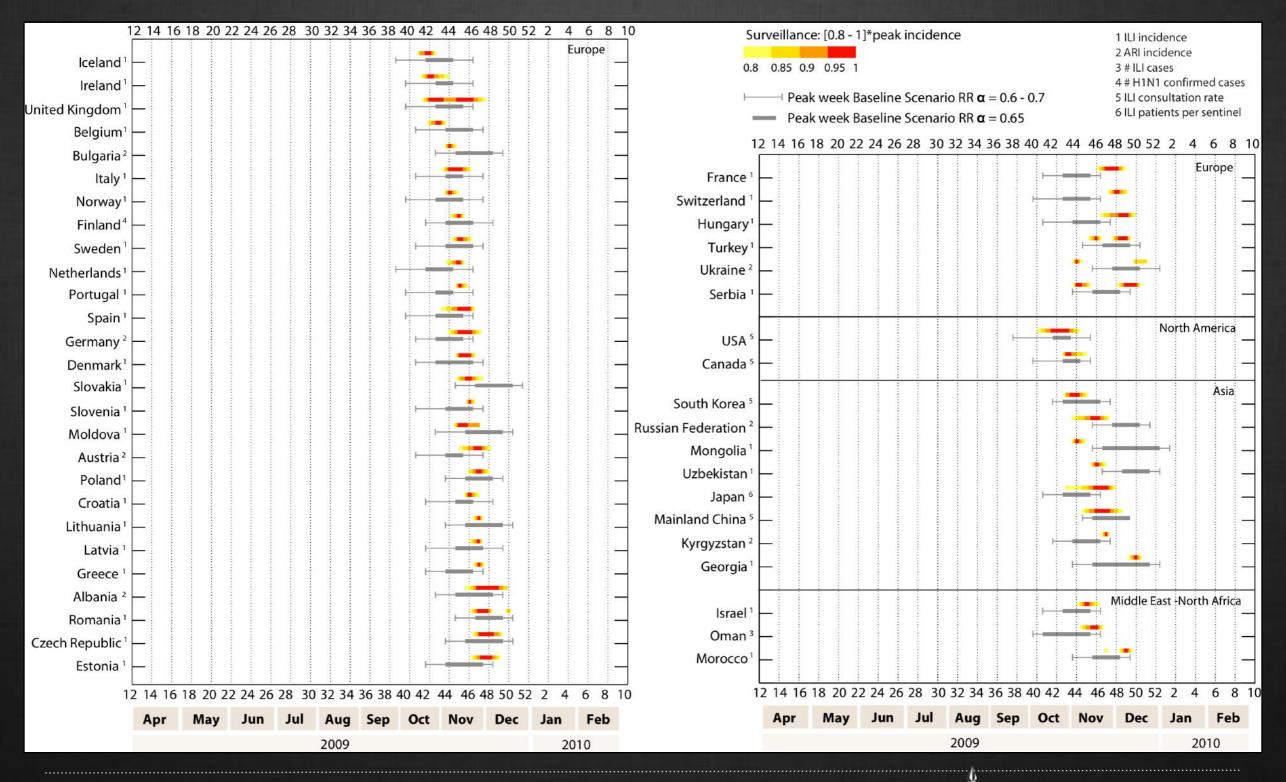


BMC, 7, 45, 2009

»

K

MODEL'S ACCURACY



BMC, 10, 165, 2012

WHAT ABOUT THE SEASONAL FLU?

PREDICTING THE SEASONAL FLU

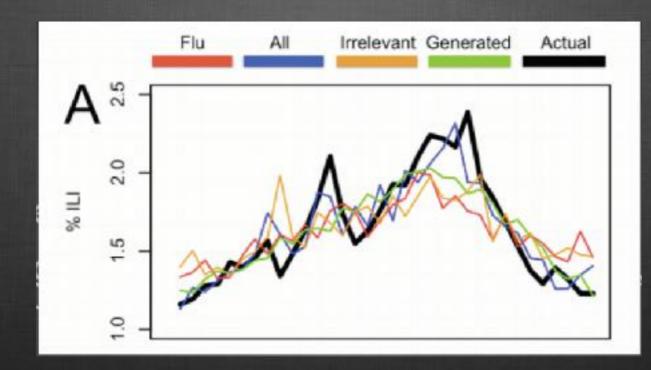
Major public health concern

• two modeling techniques: fits VS generative models

PREDICTING THE SEASONAL FLU

Classic time-series approach

- The goal is to find a correlation between a surveillance and another (more refined) data source such as Twitter or queries on google
- The parable of Google Flu Trends reveals the issues with this approach



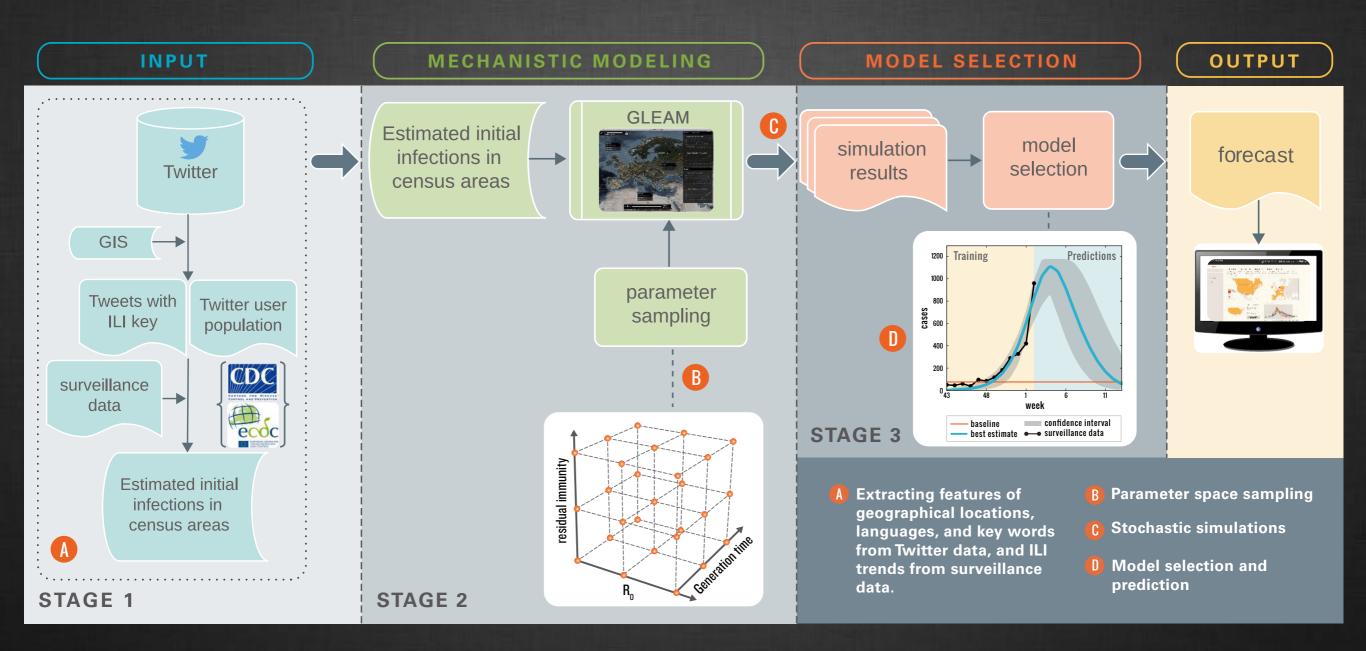
PREDICTING THE SEASONAL FLU

Generative models

- Simulate the actual infection process
- They requires a lot of data as "initial conditions" that are typically not available during the outbreak

CAN WE MERGE THE TWO?

MODELING THE SEASONAL FLU



MODELING THE SEASONAL FLU

FLUOUTLOOK 38 MOBS LAB R SCIENTIFIC INTERCHARGE Northeastern University

EFIDENEC FORECASTING DESERVATORY

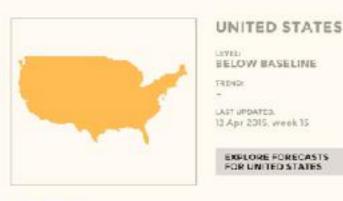
Forecast Map

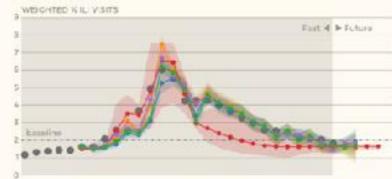
Fle Forecasts	
About	
Methodology	

Telerry

Fluoutlook is a web platform for the exploration of influenza forecasts

It provides a visual interface to numerical forecasts of the current influenza season in North America and Europe through maps and charts. Activity data and forecasts are updated weekly, based on the reports of the official influenza surveillance systems in each country. Tell me more.





40 41 42 45 44 45 46 47 48 49 50 51 52 01 02 05 64 00 06 07 03 09 10 11 12 13 14 15 16 17 18 10 20

THANKS TO

A. Vespignani D. Mistry K. Sun Q. Zhang C. Cattuto M. Quaggiotto M. Delfino A. Panisson D. Paolotti M. Tizzoni L. Rossi S. Meloni Y. Moreno L. Weng A. Flammini F. Menczer A. Baronchelli M. Starnini **B.** Goncalves C. Castillo E. Ubaldi F. Ciulla T.S. Lu

F. Bonchi L.M. Aiello J. Ratkiewicz M. Martino C. Dunne B. Riberio M.V. Tommasello C. Tessone F. Schweitzer M. Karsai V. Colizza C. Poletto D. Chao H. M. Halloran I. Longini V. Loreto G. Caldarelli A. Chessa **R. Pastor-Satorras** J. Borge-Holthoefer R. Burioni S. Liu D. Mocanu **R.** Compton

Computational Social Sciences

Series Editors: Elisa Bertino · Jacob Foster · Nigel Gilbert · Jennifer Golbeck · James A. Kitts Larry Liebovitch · Sorin A. Matei · Anton Nijholt · Robert Savit · Alessandro Vinciarelli

Bruno Gonçalves - Nicola Perra Editor. Social Phenomena From Data Analysis to Models

This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, physics and computer science. We hope to not only provide an unifying framework to understand and characterize social phenomena, but also to help foster the dialogue between researchers working on similar problems from different fields and perspectives.

Social Phenomena

Gonçalves · Perra Eds

Computational Social Sciences

Bruno Gonçalves Nicola Perra *Editors*

Social Phenomena

From Data Analysis to Models

Physics

🖄 Springer